Study of Mxene: Characterization and Radiation Properties of Two-Dimensional Titanium Carbide

Article Preview

Abstract:

In this study, radon concentration of 2D Titanium Carbide MXene Ti3C2 was studied by using an established radon monitor. A layered MAX phase of Ti3AlC2 was synthesized through pressureless sintering (PLS) the initial powder of TiH2/Al/C without preliminary dehydrogenation under argon atmosphere at 1350 °C. An elegant exfoliation approach was used to eliminates Al from its precursor to form a layered-structure of Ti3C2. Morphological and structural properties of this 2D material also studied. SEM images shows two types of morphology which is a layer of Ti3C2 and the agglomerates Al2O3 with graphite. XRD pattern reveals three phases in this material which is a rhombohedral Al2O3, rhombohedral graphite and rhombohedral Ti3C2 phases. Radon concentration for this material for five consecutive days explains the radiation level of this material is under the suggestion value from US Environmental Protection Agency (EPA).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

31-35

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Geim and K. S. Novoselov :Nat. Mater. Vol. 6 (2007), no. 3, p.183–191.

Google Scholar

[2] A. Bianco, H. M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J. M. Tascon and J. Zhang : Carbon N. Y. Vol. 65 (2013), p.1–6.

DOI: 10.1016/j.carbon.2013.08.038

Google Scholar

[3] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum : ACS Nano. Vol. 6 (2012), no. 2, p.1322–1331.

DOI: 10.1021/nn204153h

Google Scholar

[4] I. R. Shein and A. L. Ivanovskii : Micro Nano Lett. Vol. 8 (2013), no. 2, p.59–62.

Google Scholar

[5] A. N. Enyashin and A. L. Ivanovskii : J. Solid State Chem. Vol. 207 (2013), p.42–48.

Google Scholar

[6] M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi: Adv. Mater. Vol. 26 (2014), no. 7, p.992–1005.

Google Scholar

[7] S. A. Saidi, M. S. Jaafar, M. K. A. A. Razab, and N. N. Zulkepli: Aust. J. Basic Appl. Sci., vol. 7 (2013), no. 5, p.315–318.

Google Scholar

[8] W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu and Q. H. Yang : ACS Nano. Vol. 3 (2009), no. 11, p.3730–3736.

DOI: 10.1021/nn900933u

Google Scholar

[9] O. Saur, M. Bensitel, A. B. M. Saad, J. C. Lavalley, C. P. Tripp, and B. A. Morrow : J. Catal., Vol. 99 (1986), no. 1, p.104–110.

Google Scholar

[10] G. F. Walker and W. G. Garrett : Science (80-. ). Vol. 156 (1967), no. 3773, p.385–387.

Google Scholar

[11] J. Yang, B. Chen, H. Song, H. Tang, and C. Li : Cryst. Res. Technol. Vol. 49 (2014), no. 11, p.926–932.

Google Scholar

[12] Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, Q. Hu and A. Zhou : Mater. Sci. Eng. B, Vol. 191 (2015), no. C, p.33–40.

Google Scholar

[13] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum : Adv. Mater. Vol. 23 (2011), no. 37, p.4248–4253.

DOI: 10.1002/adma.201102306

Google Scholar

[14] H. Zhang, L. Wang, Q. Chen, P. Li, A. Zhou, X. Cao and Q. Hu : Mater. Des. Vol. 92 (2015), p.682–689.

Google Scholar