Comparison of Structural and Electrical Behaviour of Phospho-Olivine LiNiPO4 and LiNi0.8Mn0.1Co0.1PO4 for High Voltage Rechargeable Li-Ion Batteries

Article Preview

Abstract:

Phase pure olivine LiNiPO4 and doped LiNi0.8Mn0.1Co0.1PO4 powders have been prepared by conventional solid state route. X-ray diffraction (XRD) combined with Rietveld refinements analysis reveals the formation of LiNiPO4 and doped LiNi0.8Mn0.1Co0.1PO4 with high crystalline nature at high temperature of 950 °C and 1000 °C. The lattice parameters of doped LiNi0.8Mn0.1Co0.1PO4 are significantly larger than LiNiPO4. It has been found out that the estimated crystallite size is in the order of nanometres for both samples. SEM analysis confirms that the particles have connected with each other in random shape and sub-microns size. The particle size has increased as small amount of Mn and Co are doped into LiNiPO4. The AC impedance spectroscopy measurements have revealed that the conductivity of LiNiPO4 is enhanced by around one order of magnitude by doping Mn and Co.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

50-57

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. Vol. 144 (1997) , p.1188–1194.

Google Scholar

[2] J. Wolfenstine, J. Allen, J. Power Sources. Vol. 142 (2005), p.389–390.

Google Scholar

[3] S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, A. Yoshino, J. Power Sources. Vol. 97–98 (2001), p.430–432.

DOI: 10.1016/s0378-7753(01)00631-0

Google Scholar

[4] C.M. Julien, A. Mauger, K. Zaghib, R. Veillette, H. Groult, Structural and electronic properties of the LiNiPO4 orthophosphate, Ionics (Kiel). Vol. 18 (2012), p.625–633.

DOI: 10.1007/s11581-012-0671-6

Google Scholar

[5] M. Minakshi, P. Singh, D. Appadoo, D.E. Martin, Electrochim. Acta. Vol. 56 (2011), p.4356–4360.

Google Scholar

[6] J. Yang, J.J. Xu, J. Electrochem. Soc. Vol. 153 (2006), p. A716–A723.

Google Scholar

[7] M. Prabu, S. Selvasekarapandian, A.R. Kulkarni, S. Karthikeyan, G. Hirankumar, C. Sanjeeviraja, Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials, Ionics (Kiel). Vol. 17 (2011), p.201–207.

DOI: 10.1007/s11581-011-0535-5

Google Scholar

[8] S. Karthickprabhu, G. Hirankumar, A. Maheswaran, C. Sanjeeviraja, R.S.D. Bella, Vol. 548 (2013), p.65–69.

DOI: 10.1016/j.jallcom.2012.08.141

Google Scholar

[9] S.M. Rommel, N. Schall, C. Brünig, R. Weihrich, Monatshefte Für Chemie - Chem. Mon. Vol. 145 (2014), p.385–404.

DOI: 10.1007/s00706-013-1134-0

Google Scholar

[10] K. Rissouli, K. Benkhouja, J.R. Ramos-Barrado, C. Julien, Mater. Sci. Eng. B. Vol. 98 (2003), p.185–189.

DOI: 10.1016/s0921-5107(02)00574-3

Google Scholar

[11] P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nat. Mater. Vol. 3 (2004), p.147–52.

Google Scholar

[12] K. Anand, B. Ramamurthy, V. Veeraiah, K. Vijaya Babu, Mater. Sci. Vol. 35 (2017), p.66–80.

Google Scholar

[13] L. Dimesso, C. Spanheimer, W. Jaegermann, Mater. Res. Bull. Vol. 48 (2013), p.559–565.

Google Scholar

[14] H. Shu, X. Wang, Q. Wu, B. Hu, X. Yang, Q. Wei, Q. Liang, Y. Bai, M. Zhou, C. Wu, M. Chen, A. Wang, L. Jiang, J. Power Sources. Vol. 237 (2013), p.149–155.

DOI: 10.1016/j.jpowsour.2013.03.035

Google Scholar

[15] M. Prabu, S. Selvasekarapandian, A.R. Kulkarni, S. Karthikeyan, C. Sanjeeviraja, Trans. Nonferrous Met. Soc. China. Vol. 22 (2012), p.342–347.

DOI: 10.1016/s1003-6326(11)61181-3

Google Scholar

[16] J. Wolfenstine, J. Allen, J. Power Sources. Vol. 136 (2004), p.150–153.

Google Scholar

[17] D. Shanmukaraj, R. Murugan, Ionics (Kiel). Vol. 10 (2004), p.88–92.

Google Scholar

[18] T.Q. Tan, M.S. Idris, R.A.M. Osman, M.V. Reddy, B.V.R. Chowdari, Solid State Ionics. Vol. 278 (2015), p.43–48.

DOI: 10.1016/j.ssi.2015.05.016

Google Scholar

[19] T.Q. Tan, R.A.M. Osman, M. V Reddy, S.F. Khor, M.S. Idris, EPJ Web Conf. Vol. 162 (2017), p.01053.

Google Scholar

[20] B.H. Toby , J. Appl. Crystallogr. Vol. 34 (2001), p.210–213.

Google Scholar

[21] A.C. Larson, R.B. Von Dreele, Los Alamos Natl. Lab. Rep. LAUR. Vol. 748 (2004), p.86–748.

Google Scholar

[22] K. Rajammal, D. Sivakumar, N. Duraisamy, K. Ramesh, S. Ramesh, J. Sol-Gel Sci. Technol. Vol. 83 (2017), p.12–18.

DOI: 10.1007/s10971-017-4372-5

Google Scholar

[23] C.A.J. Fisher, V.M.H. Prieto, M.S. Islam, Chem. Mater. Vol. 20 (2008), p.5907–5915.

Google Scholar

[24] G.R. Rossman, R.D. Shannon, R.K. Waring, J. Solid State Chem. Vol. 39 (1981), p.277–287.

Google Scholar

[25] M. Prabu, S. Selvasekarapandian, M. V. Reddy, B.V.R. Chowdari, J. Solid State Electrochem. Vol. 16 (2012), p.1833–1839.

DOI: 10.1007/s10008-012-1670-2

Google Scholar

[26] S.-W. Kim, J. Kim, H. Gwon, K. Kang, J. Electrochem. Soc. Vol. 156 (2009), p. A635–A638.

Google Scholar

[27] B.H. Toby, Powder Diffr. Vol. 21 (2006), p.67–70.

Google Scholar

[28] E. Jansen, W. Schaefer, G. Will, J. Appl. Crystallogr. Vol. 27 (1994), p.492–496.

Google Scholar

[29] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. Vol. 32 (1999), p.36–50.

DOI: 10.1107/s0021889898009856

Google Scholar

[30] M.S. Idris, R.A.M. Osman, Adv. Mater. Res. Vol. 795 (2013), p.479–482.

Google Scholar

[31] R.D. Shannon, Acta Crystallogr. Sect. A. Vol. 32 (1976), p.751–767.

Google Scholar

[32] A.K. Jonscher, Nature. Vol. 267 (1977), p.673–679.

Google Scholar