Photocatalytic Properties and Graphene Oxide Additional Effects in TiO2

Article Preview

Abstract:

Photocatalytic activity in TiO2 attract great attention because it promising application in contaminations on degradation and energy conversation. However there is a need on TiO2 band gap modification to be equivalent with the visible light. Thus, inviting several method of addition certain elements including in this study, the additional of graphene oxide (GO) was investigated. GO were prepared by Hummer method before it was added into TiO2. The formation of GO from it graphite precursor had been confirmed by Raman spectroscopy. The existence of D-band at wavelength of 1328 cm-1 and G-band at 1573 cm-1 shows the formation of GO. The GO was then added in different concentration; 0.0 - 1.0 wt% into TiO2. The photocatalytic activity was determined using calculating the photodegradation efficiencies of methylene blue under UV light irradiation. The experimental results showed that the photodegradation of MB were increased with higher dopants concentration due to reduction of band gap energy of TiO2 from 3.2 eV to 3.0 eV for 1.0 wt% GO-with the photodegradation efficiency of GO doped TiO2 was 61.38%.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

65-70

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Ong, O.M. Min, L.N. Ho, Y.S. Wong and F.M Ridwan: Journal of Water Reuse and Desalination Vol 4 (2011), pp.202-207.

Google Scholar

[2] O. M. Min, L.N. Ho, S.A. Ong, and Y.S. Wong: Journal of Water Reuse and Desalination Vol 4 (2015), pp.579-591.

Google Scholar

[3] N.K.S. Nordin, U. Hashim and T. Vijayakumaran: AIP Conference Proceedings Vol 1808 (2017).

Google Scholar

[4] J.I.G. Enriquez, J.L.V. Moreno, M.Y. David, N.B. Arboleda, O.H. Lin and A.R.C. Villagracia: Journal of Electronic Materials Vol 46 (2017), pp.3592-3602.

Google Scholar

[5] A. Fujishima: Discovery and application of photocatalysis – Creating a comfortable future by making use of light energy (Japan Nanonet Bulletin, 2005).

Google Scholar

[6] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim: Phys. Rev. Lett Vol 97 (2006), p.187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[7] J. Zhang,  P. Zhou,  J. Liu  and  J. Yu: Chem. Phys. Vol. 16 (2014), pp.20382-20386.

Google Scholar

[8] J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi and W. Sigmund: Chemical Society Reviews Vol 44 (2015), pp.8424-8442.

DOI: 10.1039/c4cs00469h

Google Scholar

[9] M. A. Idris, T. Bak, S. Li and J. Nowotny: The Journal of Physical Chemistry C Vol. 116 (2012), pp.10950-10958.

Google Scholar

[10] J. Nowotny, T. Bak, M. K. Nowotny, and L. R. Sheppard: The Journal of Physical Chemistry C. Vol 112 (2008), pp.590-601.

Google Scholar

[11] D. Liang, C. Cui, H. Hu, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu and H. Shen: Journal of Alloys and Compounds Vol 582 (2014), pp.236-240.

Google Scholar

[12] Y. Min, K. Zhang, W. Zhao, F. Zheng, Y. Chen and Y. Zhang: Chemical Engineering Journal Vol 193-194 (2012), p.203–210.

Google Scholar

[13] T. Duong , N. Phan, V.H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur: Chemical Engineering Journal Vol 170 (2011), p.226–232.

DOI: 10.1016/j.cej.2011.03.060

Google Scholar

[14] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff and V. Pellegrini: Science. American Association for the Advancement of Science Vol 347 (2015), p.6217.

DOI: 10.1126/science.1246501

Google Scholar

[15] S. Stankovich , D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhamme , Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff: Carbon Vol 4 (2007), p.1558–1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[16] P. Wan, Y. Ao, C. Wang, J. Hou and J. Qian: Journal of Hazardous Materials Vol 223-224 (2012), p.79–83.

Google Scholar

[17] T.L. Lling, W.J. Ong, S.P. Chai and A.R. Mohamed: Nanoscale Research Letters Vol 8 (2013), p.465.

Google Scholar

[18] M.A. Shaheed and F.H. Hussein: Environmental Analytical Chemistry Vol 2 (2015), p.1.

Google Scholar

[19] M. Hussein, N. Assadi and D.A.H. Hanaor: Applied Surface Science.  Vol. 387 (2016) p.682–689.

Google Scholar

[20] Konstantinou, Ioannis, K Albanis and A. Triantafyllo:  Applied Catalysis B: Environmental (2004) Vol. 49, p.1.

Google Scholar

[21] N. Janusz: Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide (CRC Press 2011).

Google Scholar