Preparation and Characterization of Macro Porous Glass-Ceramics as Bioactive Scaffold Material

Article Preview

Abstract:

Bioactive glass and glass-ceramics have a huge interest in biomedical application due to their high biocompatibility and bioactive property. In this study, macro porous glass-ceramic based on 51.26% SiO2 - 36.56% CaO - 11.83% P2O5 and 42.11% SiO2 - 18.42% CaO - 29.82% Na2O - 9.65% P2O5 (in mol%) were prepared via sol-gel synthesis and powder sintering method. Sodium nitrate was used as the precursor for sodium oxide (Na2O) composition in the sol-gel glass. Effect of sodium nitrate addition on the sintered glass (glass-ceramic) properties were studied. The stabilized gel-glasses obtained were compacted into pellets and sintered at 1000 °C for 3 hours. It was found that, Na-contained glass-ceramic (Na-GC) crystallized at 71.5% due to increase in sodium-related crystalline phases. Na-GC showed 72.98% of apparent porosity and densified at 27.02% with macro porous structure with pore sizes in the range of 22.4 μm to 302 μm. The macro porous structure of Na-GC was obtained due to the foaming effect occurred during sintering. Flux effect occurred during sintering also resulted in relatively high compressive strength of Na-GC at 21.53 MPa. The macro porous Na-GC also proved to be bioactive as apatite-like structures were deposited on its surface after immersed into SBF solution for 14 days. The prepared macro porous Na-GC has high potential to be used as a scaffold material in biomedical application due to combination of suitable macro-pore size range, bioactive and has sufficient mechanical strength.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

83-89

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wu, X. Liu, K. W. K. Yeung, C. Liu, and X. Yang: Mater. Sci. Eng. R Vol. 80 (2014), p.1–36.

Google Scholar

[2] I. Farooq, Z. Imran, U. Farooq, A. Leghari, and H. Ali: World Journal of Dentistry Vol. 3 (2012), p.199–201.

Google Scholar

[3] H. Mohamad, P. Yan, N. F. Ibrahim, and S. N. F. M. Noor: in AIP Conference Proceedings (2016) Vol. 1791.

Google Scholar

[4] K. Zheng, A. Solodovnyk, W. Li, O.M. Goudouri, C. Stahli, S. N. Nazhat, and A. R. Boccaccini: J. Am. Ceram. Soc. Vol. 98 (2015), p.30–38.

Google Scholar

[5] A. Nommeots-Nomm et al.: Acta Biomater. Vol. 57 (2017), p.449–461.

Google Scholar

[6] H. Elsayed, A. Rincón Romero, L. Ferroni, C. Gardin, B. Zavan, and E. Bernardo: Materials (Basel) Vol. 10 (2017), p.171.

DOI: 10.3390/ma10020171

Google Scholar

[7] M. S. Bahniuk, H. Pirayesh, H. D. Singh, J. A. Nychka, and L. D. Unsworth: Biointerphases Vol. 7 (2012), p.1–15.

Google Scholar

[8] F. Esfehani, S. Baghshaei, A. Asghar, and B. Ghader: Basic Appl. Sci. Res. Vol. 3 (2013), p.375–382.

Google Scholar

[9] Edson Roberto Leite: Nanostructured Materials for Electrochemical Energy Production and Storage ( Springer US, 2010).

Google Scholar

[10] Q. Chen, Y. Li, L. Jin, J. M. W. Quinn, and P. A. Komesaroff: Acta Biomater. Vol. 6 (2010), p.4143–4153.

Google Scholar

[11] S. Izadi, S. Hesaraki, and M. Hafezi-Ardakani: Adv. Mater. Res. Vol. 829 (2014), p.289–293.

Google Scholar

[12] J. R. Jones, L. M. Ehrenfried, and L. L. Hench: Biomaterials Vol. 27 (2006), p.964–973.

Google Scholar

[13] Z. Y. Wu, R. G. Hill, and J. R. Jones: Bioceram. Dev. Appl. Vol. 1 (2011), p.2–5.

Google Scholar

[14] O. Parkhomey, N. Pinchuk, O. Sych, T. Tomila, O. Kuda, H. Tovstonoh, V. Gorban, V. Kolesnichenko, Y. Evych: Processing and Application of Ceramics Vol. 10 (2016), p.1–8.

DOI: 10.2298/pac1601001p

Google Scholar

[15] M. Vallet-Regí, C. V. Ragel, and A. J. Salinas: Eur. J. Inorg. Chem. Vol. 2003 (2003), p.1029–1042.

DOI: 10.1002/ejic.200390134

Google Scholar

[16] A. Lucas-Girot, F. Z. Mezahi, M. Mami, H. Oudadesse, A. Harabi, and M. Le Floch: J. Non. Cryst. Solids Vol. 357 (2011), p.3322–3327.

DOI: 10.1016/j.jnoncrysol.2011.06.002

Google Scholar

[17] A. Salerno, E. Di Maio, S. Iannace, and P. A. Netti: J. Porous Mater. Vol. 19 (2012), p.181–188.

Google Scholar

[18] B. Mehdikhani and G. Borhani: Int. Lett. Chem. Vol. 14 (2013), p.58–68.

Google Scholar

[19] M. Araújo, M. Miola, G. Baldi, J. Perez, and E. Verné: Materials (Basel) Vol. 226 (2016), p.15.

Google Scholar

[20] C. Shu, Z. Wenjuan, G. Xu, Z. Wei, J. Wei, and W. Dongmei: Mater. Sci. Eng. C Vol. 30 (2010), p.105–111.

Google Scholar

[21] K. Xie, L. Zhang, X. Yang, X. Wang, G. Yang, L. Zhang, H. Shao, Y. He, Ji. Fu, and Z. Gou:Biomed. Glas. Vol. 1 (2015), p.80–92.

Google Scholar

[22] C. J. Shih, P. S. Lu, C. H. Hsieh, W. C. Chen, and J. C. Chen: Appl. Surf. Sci. Vol. 314 (2014), p.967–972.

Google Scholar