Synthesis and Characterisation of Carbon Nanomaterials (CNMs) Using Polypropylene(PP) Waste as Carbon Precursor: Effect of Reactor Temperature

Article Preview

Abstract:

Fully utilisation of urban wastes such as polymer waste is considered as promising step to save the environment besides contributing to the production of Carbon Nanomaterials (CNMs) and their insight in mechanism involved. In this work, CNMs were successfully synthesised using polypropylene (PP) waste as carbon precursor via Chemical Vapour Deposition (CVD). Ferrocene was used as metal catalyst whereas argon was used as purging gas. The CVD were operated at various reactor temperatures to assess the possibility of CNMs growth at 600°C, 700°C, 800°C, 900°C, and 1000°C. The reaction time and argon flow rate were fixed at 90 minutes and 85 ml/min, respectively. The production of CNMs started at reactor temperature of 700°C and increased steadily from 0.0178 g to 0.2950 g with elevated temperature up to 1000°C. The diameter distribution of synthesised-CNMs reduced with the increased of reactor temperature. The XRD patterns revealed a sharp diffraction peak at around 26o (002) and broad diffraction peak at around 44o (111) which was proven to be Carbon Nanotubes (CNTs). Reactor temperature of 800°C considered as the best temperature to synthesis small diameter of CNMs in high quantity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

385-392

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. L.Wong, N. Ngadi, T.A. T. Abdullah, & I.M. Inuwa: Renewable and Sustainable Energy Reviews Vol 50 (2015), p.1167.

DOI: 10.1016/j.rser.2015.04.063

Google Scholar

[2] National Solid Waste Management Department. (2011). A Study on Plastic Management In Peninsular Malaysia, (December), 282.

Google Scholar

[3] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam: Chem. Soc. Rev. Vol. 42 (2013), p.2824.

DOI: 10.1039/c2cs35335k

Google Scholar

[4] R. H. Hurt, M. Monthioux, and A. Kane: Carbon Vol. 44 (2006), p.1028.

Google Scholar

[5] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart: Science Vol. 339 (2013), p.535.

Google Scholar

[6] N. Mishra et al.: J. Anal. Appl. Pyrolysis Vol. 94 (2012), p.91.

Google Scholar

[7] K. A. Shah and B. A. Tali: Mater. Sci. Semicond. Process Vol. 41 (2016), p.67.

Google Scholar

[8] N. M. Mubarak, E. C. Abdullah, N. S. Jayakumar, and J. N. Sahu: J. Ind. Eng. Chem. Vol. 20 (2014), p.1186.

Google Scholar

[9] G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff: Chem. Mater. Vol. 10 (1998), p.260.

Google Scholar

[10] U. Weissker, S. Hampel, A. Leonhardt, and B. Büchner: Materials (Basel) Vol. 3 (2010) p.4387.

Google Scholar

[11] P. J. Walsh, Carbon Fibers Vol. 21 (2001).

Google Scholar

[12] J. J. Ala-heikkilä, Doctoral Dissertation, (November 2008).

Google Scholar

[13] S. Bandow et al.: Phys. Rev. Lett. Vol. 80 (1998), p.3779.

Google Scholar

[14] C. Emmenegger et al.: Carbon Vol. 41 (2003), p.539.

Google Scholar

[15] G. Bin Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y. F. Shi, and H. J. Quan: Carbon N. Y., Vol. 42 (2004), p.635.

Google Scholar

[16] N. Li, X. Wang, F. Ren, G. L. Haller, and L. D. Pfefferle: J. Phys. Chem. C Vol. 113 (2009), p.10070.

Google Scholar

[17] H. Duan, J. Liang, and Z. Xia: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.Vol. 166 (2010), p.190.

Google Scholar

[18] C. J. Lee, J. Park, Y. Huh, and J. Yong Lee: Chem. Phys. Lett. Vol. 343 (2001), p.33.

Google Scholar

[19] J. Liu, Z. Jiang, H. Yu, and T. Tang: Polym. Degrad. Stab. Vol. 96 (2011), p.1711.

Google Scholar

[20] Y. T. Lee et al.: Chem. Phys. Lett. Vol. 372 (2003), p.853.

Google Scholar

[21] L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, and D. Wu: Carbon Vol. 39 (2001), p.329.

Google Scholar

[22] A. Leonhardt et al.: Chem. Vap. Depos. Vol. 12 (2006), p.380.

Google Scholar

[23] S. Chaisitsak, J. Nukeaw, and A. Tuantranont: Diam. Relat. Mater. Vol. 16 (2007), p. (1958).

Google Scholar

[24] H. Hou, A. K. Schaper, F. Weller, and A. Greiner: Chem. Mater. Vol. 14 (2002), p.3990.

Google Scholar

[25] R. Sharma, P. Rez, M. Brown, G. Du, and M. M. J. Treacy: Nanotechnology Vol. 18 (2007), p.125602.

Google Scholar

[26] M. Kumar and Y. Ando: Carbon Vol. 43 (2005), p.533.

Google Scholar

[27] L. Tapasztóet al.: Carbon Vol. 43 (2005), p.970.

Google Scholar

[28] S. M. Sharon Madhuri: Carbon Lett. Vol. 13 (2012), p.161.

Google Scholar