Mechanical Properties of Biocomposite Films Based on Poly(Lactic Acid) Reinforced with Cellulose Fibers

Article Preview

Abstract:

In this paper, we intended to study and improve the mechanical properties of poly (lactic acid) (PLA) composites with cellulose fibers from recycled newspapers. The influence of cellulose fiber content on tensile mechanical properties and swelling behavior of biocomposite films were investigated. In addition, the morphological property of biocomposite films was determined by scanning electron microscopy (SEM). It was found that the cellulose fibers have directly affected to the swelling behavior of biocomposite films. In addition, it was found that the cellulose fibers were found embedded between PLA matrices, which resulting to the improvement and increase the mechanical properties of biocomposite films. These findings illustrate that the cellulose fibers from recycled newspaper possesses good fillers and could be a good alternative reinforcement for biopolymer composites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

410-414

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.C. Pai, H.H. Chu, S.M. Lai. : J. Polym. Eng. Vol. 31 (2011), p.463.

Google Scholar

[2] S. Mohapatra, S. Maity, H.R. Dash, S. Das, S. Pattnaik, C.C. Rath, D. Samantaray : Biochem. Biophys. Rep. Vol. 12 (2017), p.206.

Google Scholar

[3] R.P. Babu, K. O'Connor, R. Seeram : Prog. Biomaterials Vol. 2 (2013), p.1.

Google Scholar

[4] S.P. Dubey, V.K. Thakur, S. Krishnaswamy, H.A. Abhyankar, V. Marchante : J.L. Brighton. Vacuum 146 (2017), p.655.

DOI: 10.1016/j.vacuum.2017.07.009

Google Scholar

[5] H.Z. Li, S.C. Chen, Y.Z. Wang: Ind. Eng. Chem. Res. Vol. 53 (2014), p.17355.

Google Scholar

[6] A. Bhatia, R.K. Gupta, S.N. Bhattacharya, H.J. Choi: Korea Aust. Rheol. J. Vol. 19 (2007), p.125.

Google Scholar

[7] M. Kaseem, Y.G. Ko: J. Polym. Environ. Vol. 25 (2017), p.994.

Google Scholar

[8] C. Fonseca, A. Ochoa, M.T. Ulloa, E Alvarez, D. Canales, P.A. Zapata: Mat. Sci. Eng. C. Vol. 57 (2015), p.314.

Google Scholar

[9] C. Shao, H.Y. Kim, V. Gong, B. Ding, D.R. Lee, S.J. Park: Mater. Lett. Vol. 57 (2003), p.1579.

Google Scholar

[10] S.M. Lai, Y.T. Hsieh: J. Macrol. Sci. B. Vol. 55 (2016), p.211.

Google Scholar

[11] D. Wu, L. Wu, M. Zhang, Y. Zhao: Polym. Degrad. Stab. Vol. 93 (2008), p.1577.

Google Scholar

[12] K. Shameli, M.B. Ahmad, W.M.Z.W. Yunus, N.A. Ibrahim, R.A. Rahman, M. Jokar, M. Darroudi: Int. J. Nanomedicine. Vol. 5 (2010), p.573.

Google Scholar

[13] M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas: Biomacromolecules. Vol. 11 (2010), p.674.

Google Scholar

[14] S.H. Lee, S. Wang, G.M. Pharr, H. Xu: Compos. Part A. Appl. Sci. Manuf. Vol. 38 (2007), p.1517.

Google Scholar

[15] M. Reinhardt, J. Kaufmann, M. Kausch, L. Kroll: Procedia Mat. Sci. Vol. 2 (2013), p.137.

Google Scholar