Characterisation of Reduction of Iron Ore with Carbonaceous Materials

Article Preview

Abstract:

An investigation on the reduction of iron ore with carbonaceous material as a reductant was carried out at 1550°C. Iron ore was mixed with biochar from palm shell and coke as a reference at C/O molar ratio of 1.0. Characterisation of raw materials was performed using X-ray Fluorescence (XRF), Brunauer–Emmett–Teller (BET), Fourier Transmittance Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM-EDX). The samples after reduction were characterised to study the phase transformation and structural properties. The XRD results revealed the iron ore contained hematite as its main composition. After reduction at high temperature, the hematite has been successfully reduced to metallic iron using biochar as a reductant. It was found that the reaction proceeded in a stepwise reduction of iron oxide. The SEM micrographs proved the formation of metallic iron in the sample after reduction at 1550°C. Through characterisation, the biochar from palm shell has physical properties suitable to be an alternative carbon reductant to replace coke.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

433-439

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Michaelis and T. Jackson : Resour. Conserv. Recycl. Vol. 29 (2000), p.131–156.

Google Scholar

[2] U.S. Geological Survey (USGS) in: Mineral Commodity Summaries 2015 Mineral Commodity Summaries 2015, Virginia, US (2015).

DOI: 10.3133/70140094

Google Scholar

[3] U.S. Geological Survey (USGS) in: The Mineral Industry of Malaysia in 2013, Virginia, US (2014).

Google Scholar

[4] H. Sun, A. A. Adetoro, Z. Wang, F. Pan, and L. Li : ISIJ Int. Vol. 56 (2016), p.936–943.

Google Scholar

[5] B. H. Huang and W. K. Lu : ISIJ Int. Vol. 33 (1993), p.1055–1061.

Google Scholar

[6] M. Rahman, R. Khanna, V. Sahajwalla, and P. O'Kane: Vol. 49 (2009), p.329–336.

Google Scholar

[7] S. Kongkarat, R. Khanna, P. Koshy, P. O'Kane, and V. Sahajwalla : ISIJ Int. Vol. 52 (2012), p.385–393.

DOI: 10.2355/isijinternational.52.385

Google Scholar

[8] J. R. Dankwah, P. Koshy, N.M. Saha-Chaudhury, P. O'Kane, C. Skidmore, D. Knights, and V. Sahajwalla : ISIJ Int. Vol. 51 (2011), p.498–507.

DOI: 10.2355/isijinternational.51.498

Google Scholar

[9] Y. Ueki, R. Mii, K. Ohno, T. Maeda, K. Nishioka, and M. Shimizu : ISIJ Int. Vol. 48 (2008), p.1670–1675.

DOI: 10.2355/isijinternational.48.1670

Google Scholar

[10] D. Guo, L. Zhu, S. Guo, B. Cui, S. Luo, M. Laghari, and Z. Chen : Fuel Process. Technol. Vol. 148 (2016), p.276–281.

Google Scholar

[11] J. X. Fu, C. Zhang, W. S. Hwang, Y. T. Liau, and Y. T. Lin : Int. J. Greenh. Gas Control Vol. 8 (2012), p.143–149.

Google Scholar

[12] N. H. Najmi, N. F. M. Yunos, N. K. Othman, A. N. Ismail, and M. A. Idris : ARPN J. Eng. Appl. Sci. Vol. 11 (2016), p.9770–9775.

Google Scholar

[13] Y. Takyu, T. Murakami, S. H. Son, and E. Kasai : ISIJ Int. Vol. 55 (2015), p.1188–1196.

Google Scholar

[14] T. Matsui, N. Ishiwata, Y. Hara, and K. Takeda : ISIJ Int. Vol. 44 (2004), p.2105–2111.

Google Scholar

[15] Z. Hu, H. Guo, M.P. Srinivasan, and N. Yaming : Sep. Purif. Technol. Vol. 31 (2003), p.47–52.

Google Scholar

[16] K. Sun and W. Lu : Metall. Mater. Trans. B Vol. 40 (2009), p.91–103.

Google Scholar

[17] T. Sharma : Int. J. Miner. Process, Vol. 39 (1993), p.299–311.

Google Scholar

[18] C. Bryk and W. Lu : Can. Metall. Q. Vol. 25 (1986), p.241–246.

Google Scholar

[19] R. L. Stephenson and R. M. Smailer, Direct Reduced Iron-Technology and Economics of Production and Use, Iron Steel Soc. AIME (1980).

Google Scholar

[20] M. Sharma and V. Solanki : Ironmak. Steelmak. Vol. 40 (2013), p.590–597.

Google Scholar