Simulation of the Heat-Insulating Sludge Waste Rubber Composite Brick by the Finite Element Method (FEM)

Article Preview

Abstract:

Recently, materials used to construct house or building wall are considered not only in the physical material behaviour but also energy conscious and economic factor. The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing composite brick was investigated. It has been widely known that the finite element method (FEM) is a tool used for finding accurate solutions of the heat transfer equation of materials including the composite bricks. In this work, study of the heat transfer of a composite brick containing rubber sludge waste (RSW) was showed and compared to results of finite element analysis (FEA) simulation. To determine the effect of rubber sludge waste to the heat transfer behaviour of composite brick with different volume fractions are varied by 10, 20, 30, 40 and 50%. It appeared that a FEA prediction showed good correspondence with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

451-461

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bernardi, J.T. DeJong, B.M. Montoya, B.C. Martinez: Constr Build Mater., Vol.55 (2014), pp.462-469.

Google Scholar

[2] S. Boukour, M.L. Benmalek: Constr Build Mater. Vol. 120 (2016), pp.473-481.

Google Scholar

[3] L. He, Y. Ma, Q. Liu, Y. Mu: Constr Build Mater. Vol. 120 (2016), pp.403-407.

Google Scholar

[4] A.S.M. Mendis, S. Al-Deen, M. Ashraf, Constr Build Mater.Vol. 154 (2017), pp.644-657.

Google Scholar

[5] I. Moslam Alwaan, Rheological characterization and modelling of vulcanization kinetics of natural rubber/starch blends, (2018).

Google Scholar

[6] V. Mymrin, D.E. Pedroso, C. Pedroso, K. Alekseev, M.A. Avanci, E. Winter, L. Cechin, P.H.B. Rolim, A. Iarozinski, R.E. Catai, Journal of Cleaner Production, 174, 380-388, (2018).

DOI: 10.1016/j.jclepro.2017.10.299

Google Scholar

[7] P. Principi, R. Fioretti: Energy Build. Vol 51(2012), pp.131-142.

Google Scholar

[8] D.M. Sadek, M.M. El-Attar : J Clean Prod. Vol. 89 (2015), pp.174-186.

Google Scholar

[9] B.S. Thomas, R.C. Gupta, V.J. Panicker: J Clean Prod. Vol. 112 (2016), pp.504-513.

Google Scholar

[10] P. Turgut, B. Yesilata: Energy Build. Vol. 40 (2008), pp.679-688.

Google Scholar

[11] S. Vichaphund, W. Intiya, A. Kongkaew, S. Loykulnant, P. Thavorniti, Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production. (2012).

DOI: 10.1080/09593330.2012.668941

Google Scholar

[12] P. Sukontasukkul, C. Chaikaew: Constr Build Mater. Vol. 20 (2006), pp.450-457.

Google Scholar

[13] A. Turatsinze, M. Garros, Resoure Conserv Recy. Vol. 52 (2008), pp.1209-1215.

Google Scholar

[14] P. Sukontasukkul : Constr Build Mater. Vol. 23 (2009), pp.1084-1092.

Google Scholar

[15] J.J.d. Coz Díaz, P.J.G. Nieto, J.L.S. Sierra, C.B. Biempica : Int. J. Heat mass transfer Vol. 51 (2008),pp.1530-1541.

Google Scholar

[16] J.J. del Coz Díaz, P.J. García Nieto, C. Betegón Biempica, M.B. Prendes Gero: Appl. Therm. Eng. Vol. 27 (2007), pp.1445-1456.

DOI: 10.1016/j.applthermaleng.2006.10.010

Google Scholar

[17] B. Demirel: Constr Build Mater. Vol. 40 (2013), pp.306-313.

Google Scholar

[18] F.C. F. Silvana, L. Graciela : Build Simul Vol. 2 (2009), pp.3-18.

Google Scholar

[19] W. Namboonruang, R. Rawangkul, W. Yodsudjai, T. Aramrak, N. Suphadon: Adv Mat Res. (2013), pp.805-806.

DOI: 10.4028/www.scientific.net/amr.805-806.1575

Google Scholar