Investigate the Properties of Solid Waste Bottom Ash (SBA) and Lime Reinforced in Composite Bricks

Article Preview

Abstract:

This research studies on the possibility of producing a more sustainable lightweight brick. Solid waste bottom ash (SBA) and lime found in area of Ratchaburi province of Thailand were mixed into the composite brick for the replacement of fine aggregates and Portland cement contents, respectively. Effects of varied amount of SBA and local lime contents typically (10, 20, 30, 40 and 50% by weight) on mechanical and physical properties of bricks were studied. Results showed that with the replacement cement and fine aggregate of 20% by weight with SBA and local lime, respectively showed the maximum values. Similarly, the thermal conductivity and density and product weight showed the maximum values at the same replacement contents. By conclusion, this application may be an interesting solution in order to improve sustainability and energy efficiency of the low cost house in local area of Thailand.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

462-468

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Fukasawa, A. Horigome, T. Tsu, A.D. Karisma, N. Maeda, A.-N. Huang, K. Fukui, Fuel Processing Technology, 167, 92-98. (2017).

DOI: 10.1016/j.fuproc.2017.06.023

Google Scholar

[2] L.M. Deraman, M.M.A.B. Abdullah, L. Ming, H. Kamarudin, Z. Yahya, The Strength of Bottom Ash-Based Geopolymer Brick with Inclusion of Fly Ash. (2016).

DOI: 10.4028/www.scientific.net/msf.841.26

Google Scholar

[3] S. Naganathan, A.Y.O. Mohamed, K.N. Mustapha: Construct Build Mater Vol. 96 (2015), pp.576-580.

Google Scholar

[4] H. Binici, O. Aksogan, M.N. Bodur, E. Akca, S. Kapur: Construct Build Mater Vol. 21 (2007), pp.901-906.

Google Scholar

[5] H. Binici, O. Aksogan, T. Shah: Construct Build Mater Vol. 19 (20050, pp.313-318.

Google Scholar

[6] I. Demir: Build Environ. Vol. 41 (2006), pp.1274-1278.

Google Scholar

[7] J. Khedari, B. Suttisonk, N. Pratinthong, J. Hirunlabh: Cement Concrete Comp. Vol. 23 (2001), 65-70.

DOI: 10.1016/s0958-9465(00)00072-x

Google Scholar

[8] J. Khedari, P. Watsanasathaporn, J. Hirunlabh: Cement Concrete Comp. Vol. 27 (2005), 111-116.

DOI: 10.1016/j.cemconcomp.2004.02.042

Google Scholar

[9] M.A. Rahman: Int J Cem Compos Lightweight Concr Vol. 9 (1987), pp.105-108.

Google Scholar

[10] W. Namboonruang, R. Rawangkul, W. Yodsudjai, N. Suphadon: Adv. Sci. Lett., Vol.14 (2012), pp.336-339.

DOI: 10.1166/asl.2012.4103

Google Scholar

[11] C. Belviso: Prog. Energy Combust. Sci. Vol. 65(2018), pp.109-135. (2018).

Google Scholar

[12] T. Çiçek, Y. Çinçin: Construct Build Mater Vol. 94 (2015), pp.521-527.

Google Scholar

[13] N. Dayananda, B.S. Keerthi Gowda, Materials Today: Proceedings, 4, 7573-7578. (2017).

Google Scholar

[14] D. Eliche-Quesada, J.A. Sandalio-Pérez, S. Martínez-Martínez, L. Pérez-Villarejo, P.J. Sánchez-Soto: Ceram. Int. Vol. 44 (2018), pp.4400-4412.

DOI: 10.1016/j.ceramint.2017.12.039

Google Scholar

[15] T. Murugesan, A. Bahurudeen, M. Sakthivel, R. Vijay, S. Sakthivel, Materials Today: Proceedings, 4, 9673-9679. (2017).

DOI: 10.1016/j.matpr.2017.06.245

Google Scholar

[16] P. Sukontasukkul, Construct Build Mater Vol.23 (2009).

Google Scholar

[17] ASTM, American Standard Testing and Materials (ASTM), West Conshohocken, PA, USA. (1996).

Google Scholar

[18] ASTM, American Standard Testing and Materials (ASTM), West Conshohocken, PA, USA. (1996).

Google Scholar

[19] ASTM, American Standard Testing and Materials (ASTM), West Conshohocken, PA, USA. (1996).

Google Scholar

[20] ASTM, American Standard Testing and Materials (ASTM), West Conshohocken, PA, USA. (1996).

Google Scholar