[1]
R.R. Madhavan, A.S. Gandhi, K.V. Govindan Kutty. Sodium titanium phosphate NaTi2(PO4)3 waste forms for immobilization of simulated high level waste from fast reactors. Ceramics International, 43(12) (2017) 9522-9530.
DOI: 10.1016/j.ceramint.2017.04.138
Google Scholar
[2]
G. Buvaneswaria, K.V. Govindan Kutty, U.V. Varadaraju. Thermal expansion behaviour of sodium zirconium phosphate structure type phosphates containing tin. Materials Research Bulletin, 39 (2004) 475-488.
DOI: 10.1016/j.materresbull.2003.10.015
Google Scholar
[3]
D. Ribero, K.C. Seymour, W.M. Kriven. Synthesis of NaTi2(PO4)3 by the inorganic-organic steric entrapment method and its thermal expansion behavior. Journal of the American Ceramic Society, 93(11) (2016) 3586-3593.
DOI: 10.1111/jace.14420
Google Scholar
[4]
D.A. Rega, D.K. Agrawal, C.Y. Huang. Microstructure and microcracking behaviour of barium zirconium phosphate (BaZr4P6O24) ceramics. Journal of Materials Science, 27(9) (1992) 2406-2412.
DOI: 10.1007/bf01105050
Google Scholar
[5]
T.P. Srikari, S. Ushadevi, S.K. Ramasesha. High temperature X-ray studies on barium and strontium zirconium phosphate based low thermal expansion materials. Materials Research Bulletin, 37(6) (2002) 1141-1147.
DOI: 10.1016/s0025-5408(02)00734-1
Google Scholar
[6]
B. Angadi, V.M. Jali, M.T. Lagare, et al. Synthesis and thermal expansion hysteresis of Ca1–xSrxZr4P6O24. Indian Academy of Sciences, 25(3) (2002) 191-196.
DOI: 10.1007/bf02711152
Google Scholar
[7]
E. Breval, D.K. Agrawal. Thermal expansion characteristics of [NZP], NaZr2P3O12-type materials: a review. British Ceramic Transactions, 94 (1995) 27-32.
Google Scholar
[8]
R. Roy, D.K. Agrawal, J.Alamo, et al. [CTP]: A new structural family of near-zero expansion ceramics. Materials Research Bulletin, 19(4) (1984) 471-477.
DOI: 10.1016/0025-5408(84)90108-9
Google Scholar
[9]
N. Chakrabortya, D. Basua, W. Fischer. Thermal expansion of Ca1-xSrxZr4(PO4)6 ceramics. Journal of the European Ceramic Society, 25 (2005) 1885-1893.
DOI: 10.1016/j.jeurceramsoc.2004.06.019
Google Scholar
[10]
D.Y. Xie Z.H. Wang. Rapid synthesis of low thermal expansion materials of Ca1-xSrxZr4P6O24. Ceramics International, 38(5) (2012) 3807-3813.
DOI: 10.1016/j.ceramint.2012.01.029
Google Scholar
[11]
P. Oikonomou, C. Dedeloudis, C.J. Stournaras, et al. [NZP]: A new family of ceramics with low thermal expansion and tunable properties. Journal of the European Ceramic Society, 27(2) (2007) 1253-1258.
DOI: 10.1016/j.jeurceramsoc.2006.04.021
Google Scholar
[12]
B. Angadi, V.M. Jali, M.T. Lagare, et al. Synthesis and thermal expansion hysteresis of Ca1–xSrxZr4P6O24. Bulletin of Materials Science, 25(3) (2002) 191-196.
DOI: 10.1007/bf02711152
Google Scholar
[13]
N. Chakrabortya, D. Basua, W. Fischer. Thermal expansion of Ca1-xSrxZr4(PO4)6 ceramics. Journal of the European Ceramic Society, 25 (2005) 1885-1893.
DOI: 10.1016/j.jeurceramsoc.2004.06.019
Google Scholar
[14]
S.Y. Limaye, D.K. Agrawal, R. Roy. Synthesis, sintering and thermal expansion of Ca1-xSrxZr4P6O24—an ultra-low thermal expansion ceramic system. Journal of Materials Science, 26(1) (1991) 93-98.
DOI: 10.1007/bf00576037
Google Scholar
[15]
T. Ota, P. Jing, I. Yamai. Low thermal expansion and low thermal expansion anisotropy ceramic of Sr0.5Zr2(PO4)3 system. Journal of Materials Science, 24(12) (1989) 4239-4245.
DOI: 10.1007/bf00544493
Google Scholar