Thermal Resistance of Fly Ash Geopolymers with Alumina as Additive

Article Preview

Abstract:

The present work investigates the effect of alumina addition on the thermal resistance of fly ash geopolymers. Fly ash geopolymers were synthesised by mixing fly ash with activator solution (A mixture of 12M sodium hydroxide and sodium silicate) at fly ash/activator ratio of 2.5 and sodium silicate/sodium hydroxide ratio of 2.5. The alumina (0, 2 and 4 wt %) was added as an additive. The geopolymers were cured at room temperature for 24 hours and 60°C for another 24 hours. After 28 days, the geopolymers was heated to elevated temperature (200 - 1000°C). For unexposed geopolymers, the addition of 2 wt % of alumina increased the compressive strength of fly ash geopolymers while the strength decreased when the content increased to 4 wt.%. The temperature-exposed geopolymers showed enhancement of strength at 200°C regardless of the alumina content. The strength reduced at higher temperature exposure (> 200°C). Despite the strength degradation at elevated temperature, the strength attained was relatively high in the range of 13 - 45 MPa up to 1000°C which adequately for application as structural materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

182-188

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ogundiran, M.B. and S. Kumar, Synthesis of fly ash-calcined clay geopolymers: Reactivity, mechanical strength, structural and microstructural characteristics. Constr. Build. Mater. 125 (2016) 450-457.

DOI: 10.1016/j.conbuildmat.2016.08.076

Google Scholar

[2] Davidovits, J., Orlinski, J., Université de technologie de Compiègne., & Commission of the European Communities.  '99 geopolymer international conference proceedings. International Conference on Geopolymers,Saint-Quentin, France.(1999).

Google Scholar

[3] Kouamo, H.T., A. Elimbi, J. Mbey, C.N. Sabouang, and D. Njopwouo, The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr. Build. Mater.35 (2012) 960-969.

DOI: 10.1016/j.conbuildmat.2012.04.023

Google Scholar

[4] Huang, Y. and M. Han, The influence of α-Al 2 O 3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products. J. Hazard. Mater.193 (2011) 90-94.

DOI: 10.1016/j.jhazmat.2011.07.029

Google Scholar

[5] Law, D.W., A.A. Adam, T.K. Molyneaux, I. Patnaikuni, and A. Wardhono, Long term durability properties of class F fly ash geopolymer concrete. Mater. Struct.48(3) (2015) 721-731.

DOI: 10.1617/s11527-014-0268-9

Google Scholar

[6] Chen, R., S. Ahmari, and L. Zhang, Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci.49(6) (2014) 2548-2558.

DOI: 10.1007/s10853-013-7950-0

Google Scholar

[7] Sakkas, K., D. Panias, P. Nomikos, and A. Sofianos, Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling Underground Space Technol. 43(2014) 148-156.

DOI: 10.1016/j.tust.2014.05.003

Google Scholar

[8] Vickers, L., W.D.A. Rickard, and A. van Riessen, Strategies to control the high temperature shrinkage of fly ash based geopolymers. Thermochim. Acta.580(Supplement C)(2014) 20-27.

DOI: 10.1016/j.tca.2014.01.020

Google Scholar

[9] Rashad, A.M. and S.R. Zeedan, The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater.25(7) (2011) 3098-3107.

DOI: 10.1016/j.conbuildmat.2010.12.044

Google Scholar

[10] Kong, D.L., J.G. Sanjayan, and K. Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res.37(12)(2007) 1583-1589.

DOI: 10.1016/j.cemconres.2007.08.021

Google Scholar

[11] Kong, D.L. and J.G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res.40(2) (2010) 334-339.

DOI: 10.1016/j.cemconres.2009.10.017

Google Scholar

[12] Lyon, R.E., P. Balaguru, A. Foden, U. Sorathia, J. Davidovits, and M. Davidovics, Fire-resistant aluminosilicate composites. Fire Mater.21(2)(1997) 67-73.

DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.0.co;2-n

Google Scholar

[13] Phoo-ngernkham, T., P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka, The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 55(2014) 58-65.

DOI: 10.1016/j.matdes.2013.09.049

Google Scholar

[14] Assaedi, H., F.U.A. Shaikh, and I.M. Low, Effect of nano-clay on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc.4(1) (2016) 19-28.

DOI: 10.1016/j.jascer.2015.10.004

Google Scholar

[15] Sanjayan, J.G., A. Nazari, L. Chen, and G.H. Nguyen, Physical and mechanical properties of lightweight aerated geopolymer. Constr. Build. Mater. 79(2015) 236-244.

DOI: 10.1016/j.conbuildmat.2015.01.043

Google Scholar

[16] Latella, B.A., D.S. Perera, D. Durce, E.G. Mehrtens, and J. Davis, Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1. J. Mater. Sci.43(8) (2008) 2693-2699.

DOI: 10.1007/s10853-007-2412-1

Google Scholar

[17] Shaikh, F. and V. Vimonsatit, Compressive strength of fly‐ash‐based geopolymer concrete at elevated temperatures. Fire Mater.39(2)(2015) 174-188.

DOI: 10.1002/fam.2240

Google Scholar

[18] Temuujin, J., A. Minjigmaa, W. Rickard, and A. Van Riessen, Thermal properties of spray-coated geopolymer-type compositions. J. Therm. Anal. Calorim.107(1) (2012) 287-292.

DOI: 10.1007/s10973-011-1766-4

Google Scholar

[19] Lemougna, P.N., K.J. MacKenzie, and U.C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int.37(8) (2011) 3011-3018.

DOI: 10.1016/j.ceramint.2011.05.002

Google Scholar

[20] Nurjaya, D.M., S. Astutiningsih, and A. Zulfia, Thermal Effect on Flexural Strength of Geopolymer Matrix Composite with Alumina and Wollastonite as Fillers. Int. J. Technol6(3) (2015) 462-470.

DOI: 10.14716/ijtech.v6i3.1441

Google Scholar

[21] Fernández-Jiménez, A., A. Palomo, and M. Criado, Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35(6)(2005) 1204-1209.

DOI: 10.1016/j.cemconres.2004.08.021

Google Scholar

[22] Škvára, F., T. Jílek, and L. Kopecký, Geopolymer materials based on fly ash. Ceram. Silik.49(3) (2005) 195-204.

Google Scholar

[23] Pawlasová, S. and F. Skavara. High-temperature properties of geopolymer materials. in Alkali activated materials-research, production and utilization 3rd conference, Prague, Czech Republic. (2007).

Google Scholar

[24] Badanoiu, A.I., T.H.A. Al Saadi, S. Stoleriu, and G. Voicu, Preparation and characterization of foamed geopolymers from waste glass and red mud. Constr. Build. Mater. 84 (2015) 284-293.

DOI: 10.1016/j.conbuildmat.2015.03.004

Google Scholar

[25] Luna-Galiano, Y., A. Cornejo, C. Leiva, L. Vilches, and C. Fernández-Pereira, Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests. Materiales de Construcción, 2015. 65(319): p. e059.

DOI: 10.3989/mc.2015.06114

Google Scholar