[1]
Ogundiran, M.B. and S. Kumar, Synthesis of fly ash-calcined clay geopolymers: Reactivity, mechanical strength, structural and microstructural characteristics. Constr. Build. Mater. 125 (2016) 450-457.
DOI: 10.1016/j.conbuildmat.2016.08.076
Google Scholar
[2]
Davidovits, J., Orlinski, J., Université de technologie de Compiègne., & Commission of the European Communities. '99 geopolymer international conference proceedings. International Conference on Geopolymers,Saint-Quentin, France.(1999).
Google Scholar
[3]
Kouamo, H.T., A. Elimbi, J. Mbey, C.N. Sabouang, and D. Njopwouo, The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr. Build. Mater.35 (2012) 960-969.
DOI: 10.1016/j.conbuildmat.2012.04.023
Google Scholar
[4]
Huang, Y. and M. Han, The influence of α-Al 2 O 3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products. J. Hazard. Mater.193 (2011) 90-94.
DOI: 10.1016/j.jhazmat.2011.07.029
Google Scholar
[5]
Law, D.W., A.A. Adam, T.K. Molyneaux, I. Patnaikuni, and A. Wardhono, Long term durability properties of class F fly ash geopolymer concrete. Mater. Struct.48(3) (2015) 721-731.
DOI: 10.1617/s11527-014-0268-9
Google Scholar
[6]
Chen, R., S. Ahmari, and L. Zhang, Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci.49(6) (2014) 2548-2558.
DOI: 10.1007/s10853-013-7950-0
Google Scholar
[7]
Sakkas, K., D. Panias, P. Nomikos, and A. Sofianos, Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling Underground Space Technol. 43(2014) 148-156.
DOI: 10.1016/j.tust.2014.05.003
Google Scholar
[8]
Vickers, L., W.D.A. Rickard, and A. van Riessen, Strategies to control the high temperature shrinkage of fly ash based geopolymers. Thermochim. Acta.580(Supplement C)(2014) 20-27.
DOI: 10.1016/j.tca.2014.01.020
Google Scholar
[9]
Rashad, A.M. and S.R. Zeedan, The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater.25(7) (2011) 3098-3107.
DOI: 10.1016/j.conbuildmat.2010.12.044
Google Scholar
[10]
Kong, D.L., J.G. Sanjayan, and K. Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res.37(12)(2007) 1583-1589.
DOI: 10.1016/j.cemconres.2007.08.021
Google Scholar
[11]
Kong, D.L. and J.G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res.40(2) (2010) 334-339.
DOI: 10.1016/j.cemconres.2009.10.017
Google Scholar
[12]
Lyon, R.E., P. Balaguru, A. Foden, U. Sorathia, J. Davidovits, and M. Davidovics, Fire-resistant aluminosilicate composites. Fire Mater.21(2)(1997) 67-73.
DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.0.co;2-n
Google Scholar
[13]
Phoo-ngernkham, T., P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka, The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 55(2014) 58-65.
DOI: 10.1016/j.matdes.2013.09.049
Google Scholar
[14]
Assaedi, H., F.U.A. Shaikh, and I.M. Low, Effect of nano-clay on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc.4(1) (2016) 19-28.
DOI: 10.1016/j.jascer.2015.10.004
Google Scholar
[15]
Sanjayan, J.G., A. Nazari, L. Chen, and G.H. Nguyen, Physical and mechanical properties of lightweight aerated geopolymer. Constr. Build. Mater. 79(2015) 236-244.
DOI: 10.1016/j.conbuildmat.2015.01.043
Google Scholar
[16]
Latella, B.A., D.S. Perera, D. Durce, E.G. Mehrtens, and J. Davis, Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1. J. Mater. Sci.43(8) (2008) 2693-2699.
DOI: 10.1007/s10853-007-2412-1
Google Scholar
[17]
Shaikh, F. and V. Vimonsatit, Compressive strength of fly‐ash‐based geopolymer concrete at elevated temperatures. Fire Mater.39(2)(2015) 174-188.
DOI: 10.1002/fam.2240
Google Scholar
[18]
Temuujin, J., A. Minjigmaa, W. Rickard, and A. Van Riessen, Thermal properties of spray-coated geopolymer-type compositions. J. Therm. Anal. Calorim.107(1) (2012) 287-292.
DOI: 10.1007/s10973-011-1766-4
Google Scholar
[19]
Lemougna, P.N., K.J. MacKenzie, and U.C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int.37(8) (2011) 3011-3018.
DOI: 10.1016/j.ceramint.2011.05.002
Google Scholar
[20]
Nurjaya, D.M., S. Astutiningsih, and A. Zulfia, Thermal Effect on Flexural Strength of Geopolymer Matrix Composite with Alumina and Wollastonite as Fillers. Int. J. Technol6(3) (2015) 462-470.
DOI: 10.14716/ijtech.v6i3.1441
Google Scholar
[21]
Fernández-Jiménez, A., A. Palomo, and M. Criado, Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35(6)(2005) 1204-1209.
DOI: 10.1016/j.cemconres.2004.08.021
Google Scholar
[22]
Škvára, F., T. Jílek, and L. Kopecký, Geopolymer materials based on fly ash. Ceram. Silik.49(3) (2005) 195-204.
Google Scholar
[23]
Pawlasová, S. and F. Skavara. High-temperature properties of geopolymer materials. in Alkali activated materials-research, production and utilization 3rd conference, Prague, Czech Republic. (2007).
Google Scholar
[24]
Badanoiu, A.I., T.H.A. Al Saadi, S. Stoleriu, and G. Voicu, Preparation and characterization of foamed geopolymers from waste glass and red mud. Constr. Build. Mater. 84 (2015) 284-293.
DOI: 10.1016/j.conbuildmat.2015.03.004
Google Scholar
[25]
Luna-Galiano, Y., A. Cornejo, C. Leiva, L. Vilches, and C. Fernández-Pereira, Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests. Materiales de Construcción, 2015. 65(319): p. e059.
DOI: 10.3989/mc.2015.06114
Google Scholar