Crystallization and Optical Properties of Sr3Al2O6-SrAl2O4 Eutectic Glass

Article Preview

Abstract:

SrO-Al2O3 ceramics has prospective applications due to its photo-luminescence and persistent afterglow properties. Sr3Al2O6-SrAl2O4 eutectic glass was prepared by using the aerodynamic levitator equipped with a CO2 laser device. The prepared Sr3Al2O6-SrAl2O4 eutectic glass beads were further heat-treated at temperature from 880°C to 980°C. The phase evolution, crystallization behavior, optical transmittance and mechanical properties of the annealed eutectic glass ceramics were investigated. The as-prepared glass is colorless and transparent over a wide range from ultraviolet to near-infrared region, and the average in-line transmittance is over 80% in the range of 260-3200nm. There were two crystal phases Sr3Al2O6 and SrAl2O4 crystallized from the glass beads. With increasing heat-treatment temperature, the transparency of the samples decreased, and the hardness increased. The prepared Sr3Al2O6-SrAl2O4 eutectic glass and glass ceramics may be a promising candidate for the development of photo-luminescence and persistent afterglow materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

163-168

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Ye, W. Zhuang, J. Wang, W. Yuan, Z. Qiao, Thermodynamic description of SrO-Al2O3 system and comparison with similar systems, J. Phase Equilib Diff. 28 (4) (2007) 362-368.

DOI: 10.1007/s11669-007-9086-x

Google Scholar

[2] J. Qi, X. Zhang, X. Han, et al, Direct synthesis of Sr3Al2(OH)12 from solution for preparation of fine-grained Sr3Al2O6 phosphors at low temperature, J. Alloy Compd. 678 (2016) 421-426.

DOI: 10.1016/j.jallcom.2016.04.005

Google Scholar

[3] C. Zollfrank, S. Gruber, M. Batentschuk, et al, Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization, Acta Mater. 61 (19) (2013) 7133-7141.

DOI: 10.1016/j.actamat.2013.08.010

Google Scholar

[4] R. S. Yadav and S. B. Rai, Frequency upconversion and downshifting emissions in solution combustion derived Yb3+, Pr3+ co-doped strontium aluminate nano-phosphor: A multi-modal phosphor, J. Lumin. 190 (2017) 171-178.

DOI: 10.1016/j.jlumin.2018.03.028

Google Scholar

[5] B. Zhang, Q. Liu, W. Yan, Y. Chen, A. Shen, H. Zhang, Relation between structure conversion and spectra-tuning properties of Eu2+-doped strontium aluminate phosphor, J. Mater Sci. 52 (13) (2017) 8188-8199.

DOI: 10.1007/s10853-017-1027-4

Google Scholar

[6] D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, H. Y. Hwang, Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers, Nat Mater. 15 ( 12) (2016) 1255-1260.

DOI: 10.1038/nmat4749

Google Scholar

[7] W. Li, T. Tian, J. Yu, H. Shen, J. Xu, Microstructure and Magnetic Properties of SmFeO3 Orange Crystal Prepared by Containerless Aerodynamic Levitation, Journal of the Chinese Ceramic Society. 45 (2017) 297-302.

Google Scholar

[8] Q. Li, M. Xing, Z. Chen, et al, Er3+/Yb3+ co-doped bioactive glasses with up-conversion luminescence prepared by containerless processing, Ceram Int. 42 (11) (2016) 13168-13175.

DOI: 10.1016/j.ceramint.2016.05.108

Google Scholar

[9] S. Alahrache, K. Al Saghir, S. Chenu, et al, Perfectly Transparent Sr3Al2O6 Polycrystalline Ceramic Elaborated from Glass Crystallization, Chem Mater. 25 (20) (2013) 4017-4024.

DOI: 10.1021/cm401953d

Google Scholar

[10] K. Kato, A. Masuno, H. Inoue, Containerless solidification of undercooled SrO-Al2O3 binary melts, Phys Chem Chem Phys. 17 (9) (2015) 6495-6500.

DOI: 10.1039/c4cp05861e

Google Scholar

[11] A. Hrubý, Evaluation of Glass Formation Tendency by DTA, Czechoslovak J. Phys. 22 (11) (1972) 1187-1193.

DOI: 10.1007/bf01690134

Google Scholar

[12] S. Alahrache, M. Deschamps, J. Lambert, et al, Crystallization of Y2O3-Al2O3 Rich Glasses: Synthesis of YAG Glass-Ceramics, J. Phys Chem C. 115 (42) (2011) 20499-20506.

DOI: 10.1021/jp207516w

Google Scholar

[13] H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal Chem. 29 (11) (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[14] J. Liu, H. Wang, B. Shen, et al, Crystallization kinetics, breakdown strength, and energy-storage properties in niobate-based glass-ceramics, J. Alloy Compd. 722 (2017) 212-218.

DOI: 10.1016/j.jallcom.2017.06.066

Google Scholar

[15] J. A. Dean, Lange's Handbook of Chemistry (15th Edition). (1999).

Google Scholar

[16] J. A. Augis, J. E. Bennett, Calculation of Avrami Parameters for Heterogeneous Solid-State Reactions Using a Modification of Kissinger Method, J. Thermal Analysis. 13 (2) (1978) 283-292.

DOI: 10.1007/bf01912301

Google Scholar

[17] L. Fu, C. Wu, K. Grandfield, et al, Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS, J. Eur Ceram Soc. 36 (14) (2016) 3487-3494.

DOI: 10.1016/j.jeurceramsoc.2016.05.016

Google Scholar