Effect of Sintering Temperature on Properties of YAG Porous Ceramics via Atmospheric Sintering Method

Article Preview

Abstract:

YAG materials have a number of unique properties, the application is very extensive, the burn is due to the temperature is too high or the residence time at high temperatures is caused. The undercurrent is the sintering temperature is too low or the holding time is not enough, resulting in product performance is too low or too small shrinkage. In this paper, the effect of sintering temperature on properties of YAG porous ceramics was investigated. The results showed that the firing temperature of the ingredients will be different and cause the same sintering process and sintering additives content of different samples burned. The increase in the content of SiO2 in the furnish with the sintering aid tends to occur. the effect of temperature on the mechanical properties of the samples after sintering was significant, so the raw materials include 60wt%YAG, 10wt% CaO, 10wt% SiO2 and 20wt% soluble starch, the molding process in 20MPa pressure 10min, the sintering at 1500°C for 2h, the sample porosity is 42.2%, the compressive strength is 5.8MPa, the outside shape is keep intact and the better pore microstructure is shown.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

224-229

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kraxner, J. Chovanec, K. Haladejova, I. Petrikova, D. Galusek, Hollow polycrystalline YAG microspheres by flame synthesis, Mater. Letts. 204 (2017) 181-183.

DOI: 10.1016/j.matlet.2017.05.108

Google Scholar

[2] R. Marder, C. Estournes, G. Chevallier, Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles:A model system of YAG, J. Eur. Ceram. Soc. 35 (2015) 211-218.

DOI: 10.1016/j.jeurceramsoc.2014.08.001

Google Scholar

[3] V. Amarantov, N.M. Khamaletdinova, R.P Yavetskiy, Colloid chemical properties of binary sols as precursors for YAG optical ceramics, Ceram. Int. 42 (2016) 17571-17580.

DOI: 10.1016/j.ceramint.2016.08.071

Google Scholar

[4] S. Hu, C. Lu, X. Liu, Z Xu, Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics, Optic. Mater. 60 (2016) 394-397.

DOI: 10.1016/j.optmat.2016.08.026

Google Scholar

[5] A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, A. Leriche, Role of LiF additive on spark plasma sintered transparent YAG ceramics, Ceram. Int. 43 (2017) 15626-15634.

DOI: 10.1016/j.ceramint.2017.08.119

Google Scholar

[6] H.M. Wang, Z.Y. Huang, J.S. Jiang, Unique mechanical properties of nano-grained YAG transparent ceramics compared with coarse-grained partners, Mater. Design. 105 (2016) 9-15.

DOI: 10.1016/j.matdes.2016.04.094

Google Scholar

[7] A. Poulia, P.M. Sakkas, D.G. Kanellopoulou, G. Sourkouni, C. Legros, Chr. Argirusis, Preparation of metal–ceramic composites by sonochemical synthesis of metallic nano-particles and in-situ decoration on ceramic powders, Ultrason. Sonochem. 31 (2016).

DOI: 10.1016/j.ultsonch.2016.01.031

Google Scholar

[8] J.H Xu, K. Bandyopadhyay, D. Jung, Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture, Int. J. Heat Mass Trans. 94 (2016).

DOI: 10.1016/j.ijheatmasstransfer.2015.11.056

Google Scholar

[9] J.Y. Xu, B.L. Zou, S.Y. Tao, M.X. Zhang, X.Q. Cao, Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders, J.Alloy. Compd. 672 (2016) 251-259.

DOI: 10.1016/j.jallcom.2016.02.116

Google Scholar

[10] J.G. Song, F. Wang, M.H. Xu, Effect of synthesis conditions on the particle size and morphology of YAG powder, J. Ceram. Process. Res. 13 (2012) 154-157.

Google Scholar

[11] T.Y. Zhou, L. Zhang, S. Wei, L.X. Wang, Q.T. Zhang, MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution, J. Eur. Ceram. Soc. 38 (2018) 687-693.

DOI: 10.1016/j.jeurceramsoc.2017.09.017

Google Scholar

[12] G.Q. Xie, D.V.L. Luzgin, F. Wakai, H. Kimura, A. Inoue, Microstructure and properties of ceramic particulate reinforced metallic glassy matrix composites fabricated by spark plasma sintering, Mater. Sci. Eng. B 148 (2008) 77-81.

DOI: 10.1016/j.mseb.2007.09.027

Google Scholar

[13] M. Rahmani, O. Mirzaee, M. Tajally, M. Reza, L. Estarki, The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals, Ceram. Int. 43 (2017)12563-12571.

DOI: 10.1016/j.ceramint.2017.06.131

Google Scholar

[14] X.H. Su, J. Zhou, G. Bai, J. Zhang, P. Zhao, Low temperature synthesis and characterization of YAG nanopowders by polyacrylamide gel method, Ceram. Int. 42 (2016) 17497-17502.

DOI: 10.1016/j.ceramint.2016.08.058

Google Scholar

[15] S. Bera, C.D. Nie, M.G. Soskind, Y. Li, E.G. Johnson, Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations, Optic. Mater. 75 (2018) 44-48.

DOI: 10.1016/j.optmat.2017.09.048

Google Scholar

[16] M.S. Asl, A.S. Namini, A. Motallebzadeh, M. Azadbeh, Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium, Mater. Chem. Phys. 203 (2018) 266-273.

DOI: 10.1016/j.matchemphys.2017.09.069

Google Scholar

[17] M.H. Xu, J.G Song, D.M. Du, F. Wang, Y.L Li, G.C Ji, F. Chen, The mechanism of controlling pore microstructure for YAG porous ceramics, Key Eng. Mater. 680 (2016) 216-219.

DOI: 10.4028/www.scientific.net/kem.680.216

Google Scholar