Cryomilling and Characterization of Ti/Al2O3 Powders

Article Preview

Abstract:

In order to prevent the oxidation of Ti, which ultimately leads to the generation of intermetallic compound Ti3Al, a new method of cryomill in liquid nitrogen was used to deal with the Ti/Al2O3 powders. The size distribution, phase composite and microstructure of the powders were analyzed using laser particle size analyzer, XRD, and TEM, respectively. Then, the performances of Ti/Al2O3 cermet sintered using cryomilled powders and room temperature milled powders were compared. The results show that, with the increase of cryomilling time, the grain size decreases shapely and high reactivitive nanoscale powders are finally obtained. With the cryomilling in liquid nitrogen, the Ti-N bonds are formed, which successfully prevent the oxidation of Ti. Ti/Al2O3 cermet sintered using cryomilled powders shows higher density, better mechanical properties than that using RT milled powders.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

285-290

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Q. Zheng, F. Y. Gao, S. X. Zhao, F. Y. Zhou, J. P. Nshimyimana, X. G. Diao, Optical design and co-sputtering preparation of high performance Mo-SiO2 cermet solar selective absorbing coating, Applied Surface Science. 280 (2013) 240-246.

DOI: 10.1016/j.apsusc.2013.04.142

Google Scholar

[2] X. Chen, W. H. Xiong, Z. H. Yao, G. P. Zhang, S. Chen, Q. Q. Yang, Characterization of Ti-based solid solution cermets prepared by mechanically induced self-sustained reaction and subsequent pressureless sintering, Journal of Alloys and Compounds. 583 (2014).

DOI: 10.1016/j.jallcom.2013.08.120

Google Scholar

[3] S. Q. Guo, Reactive hot-pressing of platelet-like ZrB2-ZrC-Zr cermets: Processing and microstructure, Ceramics International. 40 (2014)12693-12702.

DOI: 10.1016/j.ceramint.2014.04.117

Google Scholar

[4] M. A. Farrokhzad, G. C. Saha, T.I. Khan, Wear performance of co-electrodeposited cermet coatings, Surface & Coating Technology. 235 (2013) 75-85.

DOI: 10.1016/j.surfcoat.2013.07.015

Google Scholar

[5] B. Wang, D. F. Bliss, M. J. Callahan, Hydrothermal growth of Ti:sapphire (Ti3+: Al2O3) laser crystals, Journal of Crystal Growth. 311 (2009) 443-447.

DOI: 10.1016/j.jcrysgro.2008.09.052

Google Scholar

[6] H. J. Tao, K. Peng, Y. Q. Xie, Y. H. He, Z. M. Yin, Research advance on brittleness of Ti-Al intermetallics, Materials Science and Engineering of Powder Metallurgy 12 (2007) 330-336.

Google Scholar

[7] Z. C. Xie, T. H. Gao, X. T. Guo, X. M. Qin, Q. Xie, Glass formation and icosahedral medium-range order in liquid Ti-Al alloys, Computational Materials Science. 95 (2014) 502-508.

DOI: 10.1016/j.commatsci.2014.08.023

Google Scholar

[8] C. F. Gutierrez-Gonzalez, E. Fernandez-Garcia, A. Fernandez, R. Torrecillas, S. Lopez-Esteban. Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites, Journal of Materials Science. 49 (2014) 3823-3830.

DOI: 10.1007/s10853-014-8095-5

Google Scholar

[9] K. Edalati, H. Iwaoka, Z. Horita, et al, Unusual hardening in Ti/Al2O3 nanocomposites produced by high-pressure torsion followed by annealing, Materials Science and Engineering A. 529 (2011) 435-441.

DOI: 10.1016/j.msea.2011.09.056

Google Scholar

[10] M. J. Liu, Z. Wang, X. W. Luan, J. Y. Wu, Q. G. Li, Effects of CeO2 and Y2O3 on the interfacial diffusion of Ti/Al2O3 composites, Journal of Alloys and Compounds. 656 (2016) 929-935.

DOI: 10.1016/j.jallcom.2015.10.043

Google Scholar

[11] X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi and F. J. J. Vanloo, Reactions and phase relations in the TiAlO system. Acta Metall. Mater. 40 (1992) 3149.

DOI: 10.1016/0956-7151(92)90478-w

Google Scholar

[12] A. M. Kliauga, M. Ferrante, Interface compounds formed during the diffusion, Interface compounds formed during the diffusion bonding of Al2O3 to Ti, Journal of Materials Science. 35 (2000) 4243-4249.

Google Scholar

[13] L. Hua, C. L. Bao, D. H. Shen, et al, Study of the Ti/Al2O3 interface, Journal of Materials Science. 30 (1995) 339-346.

Google Scholar

[14] R. Pan, Q. Wang, D. Sun, P. He. Effects of electric field on interfacial microstructure and shear strength of diffusion bonded a-Al2O3/Ti joints, Journal of the European Ceramic Society. 35 (2015) 219-226.

DOI: 10.1016/j.jeurceramsoc.2014.07.025

Google Scholar