Low-Temperature Sintering of Porous Silicon Carbide Ceramics with H3PO4 as an Additive

Article Preview

Abstract:

In this paper, the raw SiC powder is oxidized at high temperature (1000 °C for 4h), and a layer of SiO2 oxide film is formed on the surface of SiC particles. By adding phosphoric acid, phosphoric acid reacts with SiO2 at lower temperatures to form phosphate. Phosphate decomposition produces gas to create pores. At 1200 °C, the phosphate is completely decomposed into SiO2, and a large amount of gas is produced to prepare porous SiC ceramic with high porosity and high strength. The effects of H3PO4 content on the phase composition, microstructure, porosity and mechanical properties of the prepared porous SiC ceramic were investigated. With the increase of H3PO4 content, the porosity increased and the bending strength decreased. The results suggest that at the sintering temperature of 1200 °C, the porosity of the samples can reach 58.3%~71.2%, while the bending strength of them can reach 8.72~31.09 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

311-315

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Young-Wook Kim, Yong-Seong Chun, Toshiyuki Nishimura, Mamoru Mitomo, Young-Ho Lee, High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride, Acta Mater. 55 (2) (2007) 727–736.

DOI: 10.1016/j.actamat.2006.08.059

Google Scholar

[2] T. Ohji, M. Fukushima, Macro-porous ceramics: processing and properties, Intern. Mater. Rev. 57 (2012) 115–131.

Google Scholar

[3] A.R. Studart, U.T. Gonzenbach, E. Tervoort, Processing routes to macro-porous ceramics: a review, J. Am. Ceram. Soc. 89 (2006) 1771–1789.

DOI: 10.1111/j.1551-2916.2006.01044.x

Google Scholar

[4] K.H. Zuo, Y.P. Zeng, D.L. Jiang, Mechanical properties of solid-sintered porous silicon carbide ceramics, Adv. Eng. Mater. 15 (2013) 491–495.

DOI: 10.1002/adem.201200278

Google Scholar

[5] N.D. Shcherban, Review on synthsis, structure, physical and chemical properties and functional characteristics of porous silicon carbide, J. Ind. and Eng. Chem. 50(2017) 15-28.

Google Scholar

[6] S. Liu, Y. Zeng, D. Jiang, Effects of CeO2addition on the properties of cordierite-bonded porous SiC ceramics, J. Eur. Ceram. Soc. 29 (9) (2009) 1795–1802.

DOI: 10.1016/j.jeurceramsoc.2008.11.002

Google Scholar

[7] C.Y. Bai, X.Y. Deng, J.B. Li, Y.N. Jing, W.K. Jiang, Z.M. Liu, Y. Li, Fabrication and properties of cordierite–mullite bonded porous SiC ceramics, Ceram. Int. 40 (2014) 6225–6231.

DOI: 10.1016/j.ceramint.2013.11.078

Google Scholar

[8] J.H. She, T. Ohji, S. Kanzaki, Oxidation bonding of porous silicon carbide ceramics with synergistic performance, J. Eur. Ceram. Soc. 24 (2) (2004) 331–334.

DOI: 10.1016/s0955-2219(03)00225-5

Google Scholar

[9] Y. Zheng, Z.H. Li, H.Y. Yu, R. Wang, K.M. Wei, Preparations of C/SiC composites and their use as supports for Ru catalyst in ammonia synthesis, J. Mol. Catal. A: Chem. 301 (2009) 79–83.

DOI: 10.1016/j.molcata.2008.11.009

Google Scholar

[10] S. Biamino, A. Antonini, C. Eisenmenger-Sittner, L. Fuso, M. Pavese, P. Fino, E. Bauer, C. Badini, Multilayer SiC for thermal protection system of space vehicles with decreased thermal conductivity through the thickness, J. Eur. Ceram. Soc. 30 (2010).

DOI: 10.1016/j.jeurceramsoc.2010.01.040

Google Scholar

[11] G. Liu, P. Dai, Y. Wang, J. Yang, Y.Zhang. Fabrication of wood-like porous silicon carbide ceramics without templates. J. Eur. Ceram. Soc. 2011, 31(5): 847−854.

DOI: 10.1016/j.jeurceramsoc.2010.11.036

Google Scholar

[12] S.Roy, K.G. Schell, E.C. Bucharsky. Processing and elastic property characterization of porous SiC preform for interpenetrating metal/ceramic composites. J. Am. Ceram. Soc. 2012, 95(10): 3078−3083.

DOI: 10.1111/j.1551-2916.2012.05347.x

Google Scholar

[13] J.F. Qiu, J.T. Li, K.L. Smimov. Combustion synthesis of high porosity SiC foam with nanosized grains. Ceram. Int. 2010, 36(6): 1901−(1904).

DOI: 10.1016/j.ceramint.2010.03.026

Google Scholar

[14] S. Kaulv, T. Faberk, R. Sepulveda, L.R. Arellano, Martinez-Femandezj. Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Mater. Sci. Eng. A. 2006, 428(1): 225−232.

DOI: 10.1016/j.msea.2006.05.033

Google Scholar

[15] F. Chen, Q. Shen, F.Q. Yan, L.M. Zhang, Pressureless Sintering of a-Si3N4 Porous Ceramics Using a H3PO4Pore-Forming Agent, J. Am. Ceram. Soc. 90[8] (2007) 2379–2383.

Google Scholar