A Mechanically-Alloyed Amorphous 2Si-B-3C-N Ceramic with a Crystallization Temperature up to 1800°C

Article Preview

Abstract:

A mixture of cubic silicon powder, hexagonal boron nitride powder and graphite powder was mechanically alloyed for 30 hrs in argon. The as-milled 2Si-B-3C-N composite powder was heated up to 1900 °C in nitrogen, with a heating rate of 25 °C/min and under a pressure of 80 MPa. XRD and HRTEM results show that the as-milled 2Si-B-3C-N composite powder has a well amorphous structure. Under the current hot-pressing circumstances, the amorphous ceramic starts to crystallize at a temperature between 1800 °C and 1900 °C. Once the temperature is higher than crystallization temperature, crystallites appear in the amorphous matrix with a great nucleation rate, but a small growth rate. Hot pressed at 1900 °C for 0 mins or 10 mins, the prepared 2Si-B-3C-N bulk ceramic has an average grain size of 8.7 nanometers and 22.3 nanometers, respectively. After an intensive literature search, we believe the present work is the first one to make clear that it is possible to use the mechanical alloying route to prepare amorphous Si-B-C-N ceramic with such a high crystallization temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

323-329

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Colombo, G. Mera, R. Riedel, G.D. Soraru, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc. 93 (2010) 1805-1837.

DOI: 10.1002/9783527631971.ch07

Google Scholar

[2] J. Houska, J. Vlcek, S. Potocky, V. Perina, Influence of substrate bias voltage on structure and properties of hard Si-B-C-N films prepared by reactive magnetron sputtering, Diam. Relat. Mater. 16 (2007) 29-36.

DOI: 10.1016/j.diamond.2006.03.012

Google Scholar

[3] R. Kumar, Y. Cai, P. Gerstel, G. Rixecker, F. Aldinger, Processing, crystallization and characterization of polymer derived nano-crystalline Si-B-C-N ceramics, J. Mater. Sci. 41 (2006) 7088-7095.

DOI: 10.1007/s10853-006-0934-6

Google Scholar

[4] M. Chen, H. Qiu, W. Xie, H. Guan, Oxidation behavior of Si-B-C-N multiphase ceramic, 7th Annual Meeting on Testing and Evaluation of Advanced Materials (TEIM 2016), Key Eng. Mater. 726 (2017) 148-152.

DOI: 10.4028/www.scientific.net/kem.726.148

Google Scholar

[5] Y. Tang, J. Wang, X.D. Li, W.H. Li, H. Wang, X.Z. Wang, Thermal stability of polymer derived SiBNC ceramics, Ceram. Int. 35 (2009) 2871-2876.

DOI: 10.1016/j.ceramint.2009.03.043

Google Scholar

[6] V.M. Vishnyakov, A.P. Ehiasarian, V.V. Vishnyakov, P. Hovsepian, J.S. Colligon, Amorphous boron containing silicon carbo-nitrides created by ion sputtering, Surf. Coat. Tech. 206 (2011) 149-154.

DOI: 10.1016/j.surfcoat.2011.07.002

Google Scholar

[7] N.V.R. Kumar, R. Mager, Y. Cai, A. Zimmermann, F. Aldinger, High temperature deformation behaviour of crystallized Si-B-C-N ceramics obtained from a boron modified poly(vinyl)silazane polymeric precursor, Scripta Mater. 51 (2004) 65-69.

DOI: 10.1016/j.scriptamat.2004.03.012

Google Scholar

[8] Z. Feng, Z. Guo, B. Lu, Y. Zhang, Preparation and thermal cycling resistance of SiBCN(O) coating, 8th International Conference on High-Performance Ceramics (CICC 2013), Key Eng. Mater. 602-603 (2014) 393-396.

DOI: 10.4028/www.scientific.net/kem.602-603.393

Google Scholar

[9] M. Chen, H. Qiu, W. Xie, Preparation and properties of SiC/Si-B-C-N ceramic composites, 9th China International Conference on High-Performance Ceramics (CICC 2015), Key Eng. Mater. 697 (2016) 489-493.

DOI: 10.4028/www.scientific.net/kem.697.489

Google Scholar

[10] Z.H. Yang, Y. Zhou, D.C. Jia, Q.C. Meng, Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing, Mat. Sci. Eng. A-Struct. 489 (2008) 187-192.

DOI: 10.1016/j.msea.2007.12.010

Google Scholar

[11] P. Zhang, B. Yang, Z. Lu, D. Jia, Effect of AlN and ZrO2 on the microstructure and property of the 2Si-B-3C-N ceramic, Ceram. Int. 44 (2018) 3406-3411.

DOI: 10.1016/j.ceramint.2017.11.134

Google Scholar

[12] A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill, Quantitative X-ray diffraction analysis and modeling of the crystallization process in amorphous Si-B-C-N polymer-derived ceramics, J. Am. Ceram. Soc. 93 (2010) 1470-1478.

DOI: 10.1111/j.1551-2916.2009.03591.x

Google Scholar

[13] P. Zhang, D. Jia, Z. Yang, X. Duan, Y. Zhou, Physical and surface characteristics of mechanically alloyed SiBCN powder, Ceram. Int. 38 (2012) 6399-6404.

DOI: 10.1016/j.ceramint.2012.05.012

Google Scholar

[14] A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill, Kinetic effect of boron on the crystallization of Si3N4 in Si-B-C-N polymer-derived ceramics, J. Mater. Res. 26 (2011) 600-608.

DOI: 10.1557/jmr.2010.53

Google Scholar

[15] M. Rafiei, M. Salehi, M. Shamanian, Formation mechanism of B4C-TiB2-TiC ceramic composite produced by mechanical alloying of Ti-B4C powders, Adv. Powder Technol. 25 (2014) 1754-1760.

DOI: 10.1016/j.apt.2014.07.003

Google Scholar

[16] D. Agaogullari, H. Gokce, I. Duman, M.L. Ovecoglu, Characterization investigations of ZrB2/ZrC ceramic powders synthesized by mechanical alloying of elemental Zr, B and C blends, J. Eur. Ceram. Soc. 32 (2012) 1447-1455.

DOI: 10.1016/j.jeurceramsoc.2011.04.026

Google Scholar

[17] D.V. Dudina, O.I. Lomovsky, K.R. Valeev, S.F. Tikhov, N.N. Boldyreva, A.N. Salanov, S.V. Cherepanova, V.I. Zaikovskii, A.S. Andreev, O.B. Lapina, V.A. Sadykov, Phase evolution during early stages of mechanical alloying of Cu-13 wt.% Al powder mixtures in a high-energy ball mill, J. Alloy Compd. 629 (2015).

DOI: 10.1016/j.jallcom.2014.12.120

Google Scholar

[18] C. De Mayrinck, D.P. Santos, S.J.L. Ribeiro, M.A. Schiavon, J.L. Ferrari, Reassessment of the potential applications of Eu3+-doped Y2O3 photoluminescent material in ceramic powder form, Ceram. Int. 40 (2014) 15965-15971.

DOI: 10.1016/j.ceramint.2014.07.125

Google Scholar

[19] İ. Uslu, A. Aytimur, M.K. Öztürk, S. Koçyiğit, Synthesis and characterization of neodymium doped ceria nanocrystalline ceramic structures, Ceram. Int. 38 (2012) 4943-4951.

DOI: 10.1016/j.ceramint.2012.02.087

Google Scholar

[20] A.K. Pandey, K. Biswas, Influence of sintering parameters on tribological properties of ceria stabilized zirconia bio-ceramics, Ceram. Int. 37 (2011) 257-264.

DOI: 10.1016/j.ceramint.2010.08.041

Google Scholar

[21] P. Zeman, J. Čapek, R. Čerstvý, J. Vlček, Thermal stability of magnetron sputtered Si-B-C-N materials at temperatures up to 1700 °C, Thin Solid Films 519 (2010) 306-311.

DOI: 10.1016/j.tsf.2010.08.080

Google Scholar

[22] A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill, Effect of boron on the crystallization of amorphous Si-(B-)C-N polymer-derived ceramics, J. Non-Cryst. Solids 355 (2009) 2381-2389.

DOI: 10.1016/j.jnoncrysol.2009.08.010

Google Scholar

[23] M. Weinmann, J. Schuhmacher, H. Kummer, S. Prinz, J.Q. Peng, H.J. Seifert, M. Christ, K. Muller, J. Bill, F. Aldinger, Synthesis and thermal behavior of novel Si-B-C-N ceramic precursors, Chem. Mater. 12 (2000) 623-632.

DOI: 10.1021/cm9910299

Google Scholar