Effect of Sintering Aids Sorts on Properties of Prepared Al2O3-Al Cermet

Article Preview

Abstract:

Cermet while maintaining the excellent properties of ceramic materials, but also have the advantages of a metal material, is an important new engineering materials. In this paper, Al-Al2O3 cermet is prepared adding different sintering aids via the powder metallurgy method to study the properties of Al-Al2O3 cermet. The conclusions are shown the adding sintering aids can significantly improve the sintered density of Al-Al2O3 cermet. The sintering aiding effect of adding MgO is better than that of SiO2 and Y2O3, and the hardness and the strength of the sample are higher than those of samples with SiO2 and Y2O3, and the densification degree of Al-Al2O3 metal ceramic material is the best, the relative density is 94.8%, the surface hardness is 824HV. The flatness of the surface of the sample adding MgO shows that the bonding strength between aluminum powder and alumina powder is high. The prepared Al-Al2O3 cermet adding different sintering aids have higher density and fewer pores in the microstructure the prepared Al-Al2O3 cermet adding sintering aids has a package structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

297-302

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ashida, Z. Horita, Effects of ball milling and high-pressure torsion for improving mechanical properties of Al-Al2O3 nanocomposites, J. Mater. Sci. 47 (2012) 7821-7827.

DOI: 10.1007/s10853-012-6679-5

Google Scholar

[2] H. R. Derakhshandeh, Effect of ECAP and extrusion on particle distribution in Al-nano-Al2O3 composite, Bull. Mater. Sci. 38 (2015) 1205-1212.

DOI: 10.1007/s12034-015-1001-1

Google Scholar

[3] S. Das, S. Datta, A. K. Mukhopadhyay, Al-Al2O3 core-shell composite by microwave induced oxidation of aluminium powder, Mater. Chem. Phys. 122 (2010) 574-581.

DOI: 10.1016/j.matchemphys.2010.03.049

Google Scholar

[4] M. Allam, Wear and friction of Al-Al2O3 composites at various sliding speeds, J. Mater. Sci. 43 (2008) 5797-5803.

DOI: 10.1007/s10853-008-2867-8

Google Scholar

[5] A. Jbara, Z. Othaman, A. Ati, M.A. Saeed, Characterization of Al2O3 nanopowders synthesized by co-precipitation method, Mater. Chem. Phys. 188 (2017) 24-29.

DOI: 10.1016/j.matchemphys.2016.12.015

Google Scholar

[6] S. Singh, R. Singh, Effect of process parameters on micro hardness of Al-Al2O3 composite prepared using an alternative reinforced pattern in fused deposition modelling assisted investment casting, Rob. Comp. Integ. Manuf. 37 (2016) 162-169.

DOI: 10.1016/j.rcim.2015.09.009

Google Scholar

[7] Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, Z.Y. Ma, Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing, Mater. Design. 97 (2016) 424-430.

DOI: 10.1016/j.matdes.2016.02.121

Google Scholar

[8] Z.Y. Cai, C. Zhang, R.C. Wang, C.Q. Peng, K. Qiu, Y. Feng, Preparation of Al-Si alloys by a rapid solidification and powder metallurgy route, Mater. Design. 87 (2015) 996-1002.

DOI: 10.1016/j.matdes.2015.08.106

Google Scholar

[9] K.M. Chen, D.A. Tsai, H.Ch. Liao, I.G. Chen, W.S. Hwang, Investigation of Al-Cr alloy targets sintered by various powder metallurgy methods and their particle generation behaviors in sputtering process, J. Alloy. Compd. 663 (2016) 52-59.

DOI: 10.1016/j.jallcom.2015.11.231

Google Scholar

[10] M. H. Xu, J. G. Song, R. H. Wang, S. B. Li, Effect of sintering aids sorts on the properties of porous YAG ceramics, Key Eng. Mater. 697 (2016) 178-181.

DOI: 10.4028/www.scientific.net/kem.697.178

Google Scholar

[11] W.W. Xu, Z.B. Yin, J.T. Yuan, Y.H. Fang, Effects of sintering additives on mechanical properties and microstructure of Si3N4 ceramics by microwave sintering, Mater. Sci. Eng. A., 684 (2016) 127-134.

DOI: 10.1016/j.msea.2016.12.031

Google Scholar

[12] M.D. Nguyen, C.T.Q. Nguyen, V. N. Hung, Controlling microstructure and film growth of relaxor-ferroelectric thin films for high break-down strength and energy-storage performance, J. Eur. Ceram. Soc. 38 (2018) 95-103.

DOI: 10.1016/j.jeurceramsoc.2017.08.027

Google Scholar

[13] D. Matthias, E. Bernadette, P. Giovanni, Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength, J. Micromech. Microeng. 26 (2016) 2-12.

DOI: 10.1088/0960-1317/26/11/115004

Google Scholar

[14] P.A.T. Olsson, M. Mrovec, M. Kroon, First principles characterisation of brittle transgranular fracture of titanium hydrides, Acta. Mater. 118 (2016) 362-373.

DOI: 10.1016/j.actamat.2016.07.037

Google Scholar

[15] P.A.T. Olsson, J. Blomqvist, Intergranular fracture of tungsten containing phosphorus impurities: A first principles investigation, Comp. Mater. Sci. 139 (2017) 368-378.

DOI: 10.1016/j.commatsci.2017.08.018

Google Scholar