[1]
M. Ashida, Z. Horita, Effects of ball milling and high-pressure torsion for improving mechanical properties of Al-Al2O3 nanocomposites, J. Mater. Sci. 47 (2012) 7821-7827.
DOI: 10.1007/s10853-012-6679-5
Google Scholar
[2]
H. R. Derakhshandeh, Effect of ECAP and extrusion on particle distribution in Al-nano-Al2O3 composite, Bull. Mater. Sci. 38 (2015) 1205-1212.
DOI: 10.1007/s12034-015-1001-1
Google Scholar
[3]
S. Das, S. Datta, A. K. Mukhopadhyay, Al-Al2O3 core-shell composite by microwave induced oxidation of aluminium powder, Mater. Chem. Phys. 122 (2010) 574-581.
DOI: 10.1016/j.matchemphys.2010.03.049
Google Scholar
[4]
M. Allam, Wear and friction of Al-Al2O3 composites at various sliding speeds, J. Mater. Sci. 43 (2008) 5797-5803.
DOI: 10.1007/s10853-008-2867-8
Google Scholar
[5]
A. Jbara, Z. Othaman, A. Ati, M.A. Saeed, Characterization of Al2O3 nanopowders synthesized by co-precipitation method, Mater. Chem. Phys. 188 (2017) 24-29.
DOI: 10.1016/j.matchemphys.2016.12.015
Google Scholar
[6]
S. Singh, R. Singh, Effect of process parameters on micro hardness of Al-Al2O3 composite prepared using an alternative reinforced pattern in fused deposition modelling assisted investment casting, Rob. Comp. Integ. Manuf. 37 (2016) 162-169.
DOI: 10.1016/j.rcim.2015.09.009
Google Scholar
[7]
Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, Z.Y. Ma, Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing, Mater. Design. 97 (2016) 424-430.
DOI: 10.1016/j.matdes.2016.02.121
Google Scholar
[8]
Z.Y. Cai, C. Zhang, R.C. Wang, C.Q. Peng, K. Qiu, Y. Feng, Preparation of Al-Si alloys by a rapid solidification and powder metallurgy route, Mater. Design. 87 (2015) 996-1002.
DOI: 10.1016/j.matdes.2015.08.106
Google Scholar
[9]
K.M. Chen, D.A. Tsai, H.Ch. Liao, I.G. Chen, W.S. Hwang, Investigation of Al-Cr alloy targets sintered by various powder metallurgy methods and their particle generation behaviors in sputtering process, J. Alloy. Compd. 663 (2016) 52-59.
DOI: 10.1016/j.jallcom.2015.11.231
Google Scholar
[10]
M. H. Xu, J. G. Song, R. H. Wang, S. B. Li, Effect of sintering aids sorts on the properties of porous YAG ceramics, Key Eng. Mater. 697 (2016) 178-181.
DOI: 10.4028/www.scientific.net/kem.697.178
Google Scholar
[11]
W.W. Xu, Z.B. Yin, J.T. Yuan, Y.H. Fang, Effects of sintering additives on mechanical properties and microstructure of Si3N4 ceramics by microwave sintering, Mater. Sci. Eng. A., 684 (2016) 127-134.
DOI: 10.1016/j.msea.2016.12.031
Google Scholar
[12]
M.D. Nguyen, C.T.Q. Nguyen, V. N. Hung, Controlling microstructure and film growth of relaxor-ferroelectric thin films for high break-down strength and energy-storage performance, J. Eur. Ceram. Soc. 38 (2018) 95-103.
DOI: 10.1016/j.jeurceramsoc.2017.08.027
Google Scholar
[13]
D. Matthias, E. Bernadette, P. Giovanni, Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength, J. Micromech. Microeng. 26 (2016) 2-12.
DOI: 10.1088/0960-1317/26/11/115004
Google Scholar
[14]
P.A.T. Olsson, M. Mrovec, M. Kroon, First principles characterisation of brittle transgranular fracture of titanium hydrides, Acta. Mater. 118 (2016) 362-373.
DOI: 10.1016/j.actamat.2016.07.037
Google Scholar
[15]
P.A.T. Olsson, J. Blomqvist, Intergranular fracture of tungsten containing phosphorus impurities: A first principles investigation, Comp. Mater. Sci. 139 (2017) 368-378.
DOI: 10.1016/j.commatsci.2017.08.018
Google Scholar