Co-Catalyzed Si3N4/Sialon Nanofibers Reinforced SiC Refractories

Article Preview

Abstract:

SiCp matrix refractories reinforced by Si3N4/Sialon nanofibers in-situ catalytic formed were prepared at 1400 °C. The roles of catalyst Co on the structure and properties of as-prepared products were studied. We found that the catalyst Co enhanced the nitridation of Si and/or Al. With the increasing of Co addition (from 0-2.0 wt.%), the apparent porosity of the products decreased first and then increased, while the bending strength and the bulk density were exactly the opposite. The as-prepared Si3N4/Sialon bonded SiC refractories exhibited the highest strength of 61.1 MPa as the Co content was 1.0 wt.%. The addition of Co was beneficial to the formation of Si3N4/Sialon nanofibers and the sintering of Si3N4/Sialon bonded SiC matrix refractories, which effectively improved the strength of the samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

316-322

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Majid, A perspective on non-stoichiometry in silicon carbide, Ceram. Int., 44 (2018) 1277-1283.

Google Scholar

[2] S.P. Murzin, V.B. Balyakin, Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings, Opt. Laser Technol., 88 (2017) 96-98.

DOI: 10.1016/j.optlastec.2016.09.007

Google Scholar

[3] J.C. Aguiar, C.R. Quevedo, J.M. Gomez, H.O.D. Rocco, Theoretical Compton profile of diamond, boron nitride and carbon nitride, Physica B, 521 (2017) 361-364.

DOI: 10.1016/j.physb.2017.07.016

Google Scholar

[4] X.C. Li, S.S. Chen, H. Ding, Abrasive wear behavior of SiCp–Sialon composite refractories, Ceram. Int.,41 (2015) 9146-9151.

DOI: 10.1016/j.ceramint.2015.03.325

Google Scholar

[5] V.A. Karelin, A.N. Strashko, A.V. Sazonov, A.V. Dubrovin, Obtaining the fine-grained silicon carbide, used in the synthesis of construction ceramics, Resource-Efficient Technol., 2(2016) 50-60.

DOI: 10.1016/j.reffit.2016.06.002

Google Scholar

[6] F.M. Mako, E.J. Cruz, Y.L. Tian, J. Schilling, New silicon-carbide joining technology, AIChE Spring Meeting and Global Congress on Process Safety, (2014).

Google Scholar

[7] A.D. Mazzoni, E.F. Aglietti, SiC-Si3N4 Bonded Materials by the Nitridation of Sic and Talc, Ceram. Int., 24(1998) 327-332.

DOI: 10.1016/s0272-8842(97)00018-7

Google Scholar

[8] S.R.K. Akin, S. Turan, P. Gencoglu, H. Mandal, Effect of SiC addtion on the thermal diffusivity of Sialon ceramics, Ceram. Int., 43(2017)13469-13474.

DOI: 10.1016/j.ceramint.2017.07.051

Google Scholar

[9] C. Ke, J.J. Edrees, A. Hendry, Fabrication and Microstructure of Sialon bonded Silicon Carbide, J. Eur. Ceram. Soc., 19 (1999)2165-2172.

DOI: 10.1016/s0955-2219(99)00033-3

Google Scholar

[10] H.X Qin, Y. Li, L.X. Bai, M.L. Long, W.D. Xue, J.H. Chen, Reaction mechanism for in-situ β-SiAlON formation in Fe3Si–Si3N4–Al2O3 composites, Int J Min Met Mater, 24(2017) 324-331.

DOI: 10.1007/s12613-017-1411-8

Google Scholar

[11] M.S. Asl, B. Nayebi, Z, Ahmadi, et al., Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrBr2-SiC composites, Mater. Charact., 102 (2015) 137-145.

DOI: 10.1016/j.matchar.2015.03.002

Google Scholar

[12] J.T. Huang, Z.H. Huang, S.W. Zhang, et al. Si3N4-SiCp Composites Reinforced by In Situ Co-Catalyzed Generated Si3N4 Nanofibers, J Nanomater, (2014).

Google Scholar

[13] Z.H. Huang, W. Pan, L.H. Qi,  H.Z. Miao, Erosive wear behavior of reaction sintered Si3N4-SiCp composite ceramic in liquid-solid flow, Key Eng. Mater. , 280-283 (2007) 1317-1318.

DOI: 10.4028/www.scientific.net/kem.280-283.1317

Google Scholar

[14] S. Sivasankaran, M.J.K. Kumar, A novel sonochemical synthesis of nano-size silicon nitride and titanium carbide, Ceram. Int., 41 (2015) 11301-11305.

DOI: 10.1016/j.ceramint.2015.05.087

Google Scholar

[15] P. Moradipour, F. Dabirian, L. Rajabi, A.A. Derakhshan, Fabrication and characterization of new bulky layer mixed metal oxide ceramic nanofibers through two nozzle electrospinning method, Ceram. Int., 42(2016) 13449-13458.

DOI: 10.1016/j.ceramint.2016.05.132

Google Scholar

[16] C.M. Huang, D. Zhu, Y. Xu, W.M. Kriven, Y.Y. Chao, SiCf/O'-SiA1ON composite: properties and oxidation retained properties, Mater. Sci. Eng. A, 220 (1996) 176-184.

DOI: 10.1016/s0921-5093(96)10477-9

Google Scholar

[17] Q. Liu, L. Gao, D. S, Yan and D.P. Thompson, Hard sialon ceramics reinforced with SiC nanoparticles, Mater. Sci. Eng., 269 (1999) 1-17.

Google Scholar

[18] R. Cano-Crespoa, B.M. Moshtaghioun, et al., Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing-phase: Is it feasible?, J. Eur. Ceram. Soc., 37(2017) 3791-3796.

DOI: 10.1016/j.jeurceramsoc.2017.03.027

Google Scholar

[19] P. Wang, L.F. Cheng, Y.N Zhang, et al., Flexible, hydrophobic SiC ceramic nanofibers used as high frequency electromagnetic wave absorbers, Ceram. Int., 43(2017) 7424-7435.

DOI: 10.1016/j.ceramint.2017.03.001

Google Scholar