Characterization of Cf/SiC Composite Fiber Bundle Surface Based on an Optical System

Article Preview

Abstract:

The traditional contact devices measure material's surface roughness by scratching its surface, which may cause surface damage and sampling error. In order to avoid these troubles, an optical measurement system is used in this paper. Considering the anisotropic and inhomogeneous surface structure of Cf/SiC composite, a multi-scale measure system must be established. Fiber bundle is the first scale to be studied, whose appropriate measurement parameters are studied here. When sampling area is 150μm×150μm and sampling step is from 0.1μm to 0.5μm, the values of 3D surface parameters Sa, Sq, Ssk and Sku are steady and their relative changes are small. 2D surface roughness Ra is adopted to select the proper sampling length. The results show that as long as the sampling length is more than 112μm, the mean value of 2D surface roughness Ra are relatively stable. The critical sampling length is about 1/7 of the standard minimum sampling length in ISO 468-1982. According to the results obtained, the research provides a useful guideline for determination on the appropriate sampling conditions of Cf/SiC composite fiber bundle surface measurement.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

336-342

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Cao, B. Lin,X. Zhang, A study on grinding surface waviness of woven ceramic matrix composites, Appl. Surf. Sci. 270 (2013) 503-512.

DOI: 10.1016/j.apsusc.2013.01.069

Google Scholar

[2] W. Krenkel, F. Berndt, C/C-SiC composites for space applications and advanced friction systems, Mater. Sci. Eng., A. 412 (2005) 177-181.

DOI: 10.1016/j.msea.2005.08.204

Google Scholar

[3] L. M. Manocha, G. Prasad, S. Manocha, Carbon-Ceramic Composites for Friction Applications, Mech. Adv. Mater. Struct. 21 (2014) 172-180.

DOI: 10.1080/15376494.2013.834095

Google Scholar

[4] W. Krenkel, B. Heidenreich, R. Renz, C/C-SiC composites for advanced friction systems, Adv. Eng. Mater. 4 (2002) 427-436.

DOI: 10.1002/1527-2648(20020717)4:7<427::aid-adem427>3.0.co;2-c

Google Scholar

[5] W. Krenkel, High-performance brake pads, Am. Ceram. Soc. Bull. 83 (2004) 4-4.

Google Scholar

[6] W. Krenkel, Carbon fiber reinforced CMC for high-performance structures, Int. J. of Appl.Ceram. Technol. 1 (2004) 188-200.

Google Scholar

[7] J. Wei, B. Lin, X. Cao, Two-dimensional evaluation of 3D needled Cf/SiC composite fiber bundle surface, Appl. Surf. Sci. 355 (2015) 166-170.

DOI: 10.1016/j.apsusc.2015.06.182

Google Scholar

[8] G. Samtaş, Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network, Int. J. Adv. Manufactur. Technol. 73 (2014) 353-364.

DOI: 10.1007/s00170-014-5828-1

Google Scholar

[9] Z. Yilbas, M. Hasmi, Surface roughness measurement using an optical system, J. Mater. Process. Technol. 88 (1999) 10-22.

Google Scholar

[10] G. Stachowiak, Experimental methods in tribology, Elsevier. 44 (2004) 5-8.

Google Scholar

[11] B. Dhanasekar, B. Ramamoorthy, Restoration of blurred images for surface roughness evaluation using machine vision, Tribol. Int. 43 (2010) 268-276.

DOI: 10.1016/j.triboint.2009.05.030

Google Scholar

[12] T. Jeyapoovan, M. Murugan, Surface roughness classification using image processing, Meas. 46 (2013) 2065-(2072).

DOI: 10.1016/j.measurement.2013.03.014

Google Scholar

[13] B. Dhanasekar, N. K. Mohan, B. Bhaduri, Evaluation of surface roughness based on monochromatic speckle correlation using image processing, Precis. Eng. 32 (2008) 196-206.

DOI: 10.1016/j.precisioneng.2007.08.005

Google Scholar

[14] Y. K. Fuh, K. C. Hsu, J. R. Fan, Roughness measurement of metals using a modified binary speckle image and adaptive optics, Opt. Lasers Eng. 50 (2012) 312-316.

DOI: 10.1016/j.optlaseng.2011.11.003

Google Scholar

[15] W. Laopornpichayanuwat, J. Visessamit, 3D Surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode, Meas. 45 (2012) 2400-2406.

DOI: 10.1016/j.measurement.2011.09.030

Google Scholar

[16] Y. Quinsat, C. Tournier, In situ non-contact measurements of surface roughness, Preci. Eng. 36 (2012) 97-103.

DOI: 10.1016/j.precisioneng.2011.07.011

Google Scholar

[17] U. C. Nwaogu, N. S. Tiedje, H. N. Hansen, A non-contact 3D method to characterize the surface roughness of castings, J. Mater. Process. Technol. 213 (2013) 59-68.

DOI: 10.1016/j.jmatprotec.2012.08.008

Google Scholar

[18] D. Yim, S. Kim, Optimum sampling interval for Ra roughness measurement, Proc. Instit. Mech. Eng. 205 (1991) 139-142.

Google Scholar

[19] P. Pawlus, Digitisation of surface topography measurement results, Meas. 40 (2007) 672-686.

DOI: 10.1016/j.measurement.2006.07.009

Google Scholar

[20] P. Pawlus,D. G. Chetwynd, Efficient characterization of surface topography in cylinder bores, Preci. Eng. 19 (1996) 164-174.

DOI: 10.1016/s0141-6359(96)00023-2

Google Scholar

[21] J. R. Ferreira, N. L. Coppini, F. Levy Neto, Characteristics of carbon–carbon composite turning, J. Mater. Process. Technol. 109 (2001) 65-71.

DOI: 10.1016/s0924-0136(00)00776-7

Google Scholar

[22] P. J. Sullivan, L. Blunt, Three-dimensional characterization of indentation topography: visual characterization, Wear. 159 (1992) 207-221.

DOI: 10.1016/0043-1648(92)90304-q

Google Scholar

[23] N. Senin, M. Ziliotti, R. Groppetti, Three-dimensional surface topography segmentation through clustering, Wear. 262 (2007) 395-410.

DOI: 10.1016/j.wear.2006.06.013

Google Scholar

[24] F. Zhao, 3D evaluation method of cutting surface topography of carbon/phenolic (C/Ph) composite, J.Wuhan Univ. of Technol. 26 (2011) 459-463.

DOI: 10.1007/s11595-011-0249-6

Google Scholar

[25] W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterizing three-dimensional surface topography I: Some inherent properties of parameter variation, Wear. 159 (1992) 161-171.

DOI: 10.1016/0043-1648(92)90299-n

Google Scholar

[26] W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterizing three-dimensional surface topography II: Statistical properties of parameter variation, Wear. 167 (1993) 9-21.

DOI: 10.1016/0043-1648(93)90050-v

Google Scholar

[27] W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterising three-dimensional surface topography: IV: Parameters for characterising spatial and hybrid properties, Wear. 178 (1994) 45-60.

DOI: 10.1016/0043-1648(94)90128-7

Google Scholar

[28] W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterising three-dimensional surface topography: III: Parameters for characterising amplitude and some functional properties, Wear. 178 (1994) 29-43.

DOI: 10.1016/0043-1648(94)90127-9

Google Scholar

[29] X. Cao, B. Lin, Y. Wang, Influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite, Appl. Surf. Sci. 292 (2014) 181-189.

DOI: 10.1016/j.apsusc.2013.11.109

Google Scholar

[30] X. Cao, B. Lin, X. Zhang, Investigations on grinding process of woven ceramic matrix composite based on reinforced fiber orientations, Composites Part B. 71 (2015) 184-192.

DOI: 10.1016/j.compositesb.2014.11.029

Google Scholar

[31] M.L. Wu, C.Z. Ren, H.Z. Xu, Comparative study of micro topography on laser ablated C/SiC surfaces with typical uni-directional fibre ending orientations, Ceram. Int. 42 (2016) 7929-7942.

DOI: 10.1016/j.ceramint.2016.01.173

Google Scholar

[32] G. A. Al-Kindi, B. Shirinzadeh, An evaluation of surface roughness parameters measurement using vision-based data, Int. J. Mach. Tools Manufact. 47 (2007) 697-708.

DOI: 10.1016/j.ijmachtools.2006.04.013

Google Scholar

[33] S. Fan, Y. Xu, L. Zhang, Three-dimensional needled carbon/silicon carbide composites with high friction performance, Mater. Sci. Eng. 467 (2007) 53-58.

DOI: 10.1016/j.msea.2007.02.053

Google Scholar

[34] X. Cao, B. Lin, Y. Wang, Some observations in grinding surface quality of FRCMC, Adv. Mater. Manufact. Sci. Technol. 770 (2014) 198-201.

DOI: 10.4028/www.scientific.net/msf.770.198

Google Scholar