[1]
X.Cao, B. Lin,X. Zhang, A study on grinding surface waviness of woven ceramic matrix composites, Appl. Surf. Sci. 270 (2013) 503-512.
DOI: 10.1016/j.apsusc.2013.01.069
Google Scholar
[2]
W. Krenkel, F. Berndt, C/C-SiC composites for space applications and advanced friction systems, Mater. Sci. Eng., A. 412 (2005) 177-181.
DOI: 10.1016/j.msea.2005.08.204
Google Scholar
[3]
L. M. Manocha, G. Prasad, S. Manocha, Carbon-Ceramic Composites for Friction Applications, Mech. Adv. Mater. Struct. 21 (2014) 172-180.
DOI: 10.1080/15376494.2013.834095
Google Scholar
[4]
W. Krenkel, B. Heidenreich, R. Renz, C/C-SiC composites for advanced friction systems, Adv. Eng. Mater. 4 (2002) 427-436.
DOI: 10.1002/1527-2648(20020717)4:7<427::aid-adem427>3.0.co;2-c
Google Scholar
[5]
W. Krenkel, High-performance brake pads, Am. Ceram. Soc. Bull. 83 (2004) 4-4.
Google Scholar
[6]
W. Krenkel, Carbon fiber reinforced CMC for high-performance structures, Int. J. of Appl.Ceram. Technol. 1 (2004) 188-200.
Google Scholar
[7]
J. Wei, B. Lin, X. Cao, Two-dimensional evaluation of 3D needled Cf/SiC composite fiber bundle surface, Appl. Surf. Sci. 355 (2015) 166-170.
DOI: 10.1016/j.apsusc.2015.06.182
Google Scholar
[8]
G. Samtaş, Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network, Int. J. Adv. Manufactur. Technol. 73 (2014) 353-364.
DOI: 10.1007/s00170-014-5828-1
Google Scholar
[9]
Z. Yilbas, M. Hasmi, Surface roughness measurement using an optical system, J. Mater. Process. Technol. 88 (1999) 10-22.
Google Scholar
[10]
G. Stachowiak, Experimental methods in tribology, Elsevier. 44 (2004) 5-8.
Google Scholar
[11]
B. Dhanasekar, B. Ramamoorthy, Restoration of blurred images for surface roughness evaluation using machine vision, Tribol. Int. 43 (2010) 268-276.
DOI: 10.1016/j.triboint.2009.05.030
Google Scholar
[12]
T. Jeyapoovan, M. Murugan, Surface roughness classification using image processing, Meas. 46 (2013) 2065-(2072).
DOI: 10.1016/j.measurement.2013.03.014
Google Scholar
[13]
B. Dhanasekar, N. K. Mohan, B. Bhaduri, Evaluation of surface roughness based on monochromatic speckle correlation using image processing, Precis. Eng. 32 (2008) 196-206.
DOI: 10.1016/j.precisioneng.2007.08.005
Google Scholar
[14]
Y. K. Fuh, K. C. Hsu, J. R. Fan, Roughness measurement of metals using a modified binary speckle image and adaptive optics, Opt. Lasers Eng. 50 (2012) 312-316.
DOI: 10.1016/j.optlaseng.2011.11.003
Google Scholar
[15]
W. Laopornpichayanuwat, J. Visessamit, 3D Surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode, Meas. 45 (2012) 2400-2406.
DOI: 10.1016/j.measurement.2011.09.030
Google Scholar
[16]
Y. Quinsat, C. Tournier, In situ non-contact measurements of surface roughness, Preci. Eng. 36 (2012) 97-103.
DOI: 10.1016/j.precisioneng.2011.07.011
Google Scholar
[17]
U. C. Nwaogu, N. S. Tiedje, H. N. Hansen, A non-contact 3D method to characterize the surface roughness of castings, J. Mater. Process. Technol. 213 (2013) 59-68.
DOI: 10.1016/j.jmatprotec.2012.08.008
Google Scholar
[18]
D. Yim, S. Kim, Optimum sampling interval for Ra roughness measurement, Proc. Instit. Mech. Eng. 205 (1991) 139-142.
Google Scholar
[19]
P. Pawlus, Digitisation of surface topography measurement results, Meas. 40 (2007) 672-686.
DOI: 10.1016/j.measurement.2006.07.009
Google Scholar
[20]
P. Pawlus,D. G. Chetwynd, Efficient characterization of surface topography in cylinder bores, Preci. Eng. 19 (1996) 164-174.
DOI: 10.1016/s0141-6359(96)00023-2
Google Scholar
[21]
J. R. Ferreira, N. L. Coppini, F. Levy Neto, Characteristics of carbon–carbon composite turning, J. Mater. Process. Technol. 109 (2001) 65-71.
DOI: 10.1016/s0924-0136(00)00776-7
Google Scholar
[22]
P. J. Sullivan, L. Blunt, Three-dimensional characterization of indentation topography: visual characterization, Wear. 159 (1992) 207-221.
DOI: 10.1016/0043-1648(92)90304-q
Google Scholar
[23]
N. Senin, M. Ziliotti, R. Groppetti, Three-dimensional surface topography segmentation through clustering, Wear. 262 (2007) 395-410.
DOI: 10.1016/j.wear.2006.06.013
Google Scholar
[24]
F. Zhao, 3D evaluation method of cutting surface topography of carbon/phenolic (C/Ph) composite, J.Wuhan Univ. of Technol. 26 (2011) 459-463.
DOI: 10.1007/s11595-011-0249-6
Google Scholar
[25]
W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterizing three-dimensional surface topography I: Some inherent properties of parameter variation, Wear. 159 (1992) 161-171.
DOI: 10.1016/0043-1648(92)90299-n
Google Scholar
[26]
W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterizing three-dimensional surface topography II: Statistical properties of parameter variation, Wear. 167 (1993) 9-21.
DOI: 10.1016/0043-1648(93)90050-v
Google Scholar
[27]
W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterising three-dimensional surface topography: IV: Parameters for characterising spatial and hybrid properties, Wear. 178 (1994) 45-60.
DOI: 10.1016/0043-1648(94)90128-7
Google Scholar
[28]
W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for characterising three-dimensional surface topography: III: Parameters for characterising amplitude and some functional properties, Wear. 178 (1994) 29-43.
DOI: 10.1016/0043-1648(94)90127-9
Google Scholar
[29]
X. Cao, B. Lin, Y. Wang, Influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite, Appl. Surf. Sci. 292 (2014) 181-189.
DOI: 10.1016/j.apsusc.2013.11.109
Google Scholar
[30]
X. Cao, B. Lin, X. Zhang, Investigations on grinding process of woven ceramic matrix composite based on reinforced fiber orientations, Composites Part B. 71 (2015) 184-192.
DOI: 10.1016/j.compositesb.2014.11.029
Google Scholar
[31]
M.L. Wu, C.Z. Ren, H.Z. Xu, Comparative study of micro topography on laser ablated C/SiC surfaces with typical uni-directional fibre ending orientations, Ceram. Int. 42 (2016) 7929-7942.
DOI: 10.1016/j.ceramint.2016.01.173
Google Scholar
[32]
G. A. Al-Kindi, B. Shirinzadeh, An evaluation of surface roughness parameters measurement using vision-based data, Int. J. Mach. Tools Manufact. 47 (2007) 697-708.
DOI: 10.1016/j.ijmachtools.2006.04.013
Google Scholar
[33]
S. Fan, Y. Xu, L. Zhang, Three-dimensional needled carbon/silicon carbide composites with high friction performance, Mater. Sci. Eng. 467 (2007) 53-58.
DOI: 10.1016/j.msea.2007.02.053
Google Scholar
[34]
X. Cao, B. Lin, Y. Wang, Some observations in grinding surface quality of FRCMC, Adv. Mater. Manufact. Sci. Technol. 770 (2014) 198-201.
DOI: 10.4028/www.scientific.net/msf.770.198
Google Scholar