Effects of Sintering Temperature on Phase, Physical Properties and Microstructure of Ca3Co4O9 Ceramic

Article Preview

Abstract:

This study investigated the effects of sintering temperature on phase, physical properties and microstructure of calcium cobalt oxide (Ca3Co4O9 or CCO) ceramic. CCO powder was prepared with using the mixed oxide method and calcined at 750°C for 24 h. The ceramics were prepared by sintering the powder at 900, 950, 1000 and 1050°C under a normal air atmosphere for 24 h. A maximum density of 4.02 g/cm3 (~92% relative density) with 12% linear shrinkage was obtained in the sample sintered at 1000°C. XRD patterns of the CCO ceramics indicated pure phase with no detected impurity. SEM images of the ceramics showed plate-like shaped grains. The average grain size value gradually increased as the sintering temperature increased, and reached a maximum value of 8.95 mm at the sintering temperature of 1000°C. The deviation from stoichiometric composition for the samples sintered at low sintering temperatures may be due to the low sample density which in turn affected the EDS analysis results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

101-106

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Moon, W.S. Seo, H. Okabe, T. Okawa, K. Koumo, Ca-doped RCoO3 (R = Gd, Sm, Nd, Pr) as thermoelectric materials, J. Mater. Chem. 10 (2000) 2007-(2009).

DOI: 10.1039/b003964k

Google Scholar

[2] J.W. Moon, Y. Masuda, W.S. Seo, K. Koumoto, Ca-doped HoCoO3 as p-type oxide thermoelectric material, Mater. Lett. 48 (2001) 225-229.

DOI: 10.1016/s0167-577x(00)00308-6

Google Scholar

[3] S. Boontham, S. Jiansirisomboon, A. Watcharapasorn, Effects of Bi0.5Na0.5TiO3 dopant on microstructure and thermoelectric properties of NaxCoO2 ceramics, Nano. Sci. Nano. tecno. 15 (2015) 1-4.

Google Scholar

[4] T. Seetawana, K. Singsooga, S. Srichaia, C. Thanachayanont, V. Amornkitbamrung, P. Chindaprasirt, Thermoelectric energy conversion of p-Ca3Co4O9/n-CaMnO3 module, SNRU. 61 (2014) 1067-1070.

DOI: 10.1016/j.egypro.2014.11.1024

Google Scholar

[5] A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, Misfit-layered cobaltite with an anisotropic giant magneto resistance Ca3Co4O9, Phys. Rev. B. 62 (2000) 166-175.

DOI: 10.1103/physrevb.62.166

Google Scholar

[6] Y.J. Cha, I.Y. Hong, T.K. Kim, J.M. Lee, J.S. Kwak, Influence of thermal treatment of a calcium cobalt oxide thin film by rapid thermal annealing, J. Korean Phys. Soc. 72 (2018) 390-393.

DOI: 10.3938/jkps.72.390

Google Scholar

[7] M. Yarestani, A.D. Khalaji, A. Rohani, D. Das, Hydrothermal synthesis of cobalt oxide nanoparticles: Its optical and magnetic properties, J. Sci. I. R. Iran. 25 (2014) 339-343.

Google Scholar

[8] K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, K. Koumoto, High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method, Appl. Phys. Lett. 89 (2006) 032111.

DOI: 10.1063/1.2234277

Google Scholar

[9] Y.C. Liou, W.C. Tsai, W.Y. Lin, U.R. Lee, Synthesis of Ca3Co4O9 and CuAlO2 ceramics of the thermoelectric application using a reaction-sintering process, J. Aust. Ceram. Soc. 44 (2008) 17-22.

Google Scholar

[10] M. Tahashi, T. Tanimoto, H. Goto, M. Takahashi, T. Ido, Sintering temperature dependence of thermoelectric performance and crystal phase of calcium cobalt oxides, J. Am. Ceram. Soc. 93 (2010) 3046-3048.

DOI: 10.1111/j.1551-2916.2010.04026.x

Google Scholar

[11] T. Schulz, J. Topfer, Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method, J. Alloys Compd. 659 (2016) 122-126.

DOI: 10.1016/j.jallcom.2015.11.001

Google Scholar

[12] N. Kulrat, D. Bootkul, S. Dangtip, S. Intarasiri, Study of nucleation and crystallization of SLG mixing with SiO2, ZnO, TiO2 and CuO by SEM/EDX, Microsc. Microanal. Res. 1 (2017) 16-19.

Google Scholar

[13] P. Jaita, S. Jiansirisomboon, Dielectric, ferroelectric and electric field-induced strain behavior of Ba(Ti0.90Sn0.10)O3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoelectrics, J. Alloys Compd. 596 (2014) 98-106.

DOI: 10.1016/j.jallcom.2014.01.183

Google Scholar

[14] N. Prasoetsopha, S. Pinitsoontorn, V. Amornkitbamrung, High temperature thermoelectric and optical properties of Ca3Co4 O9 prepared by thermal hydro-decomposition, Chiang Mai J. Sci. 40 (2013) 1030-1034.

DOI: 10.1007/s11664-013-2954-8

Google Scholar

[15] B. Fang, N. Jiang, C. Ding, Q. Du, J. Ding, Decrease of sintering temperature by CuO doping of the 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics prepared by reaction-sintering method, Phys. Status. Solidi. A. 209 (2012) 254-261.

DOI: 10.1002/pssa.201127486

Google Scholar

[16] K. Singsoog, P.B. Thang, J.G. Han, C. Thanachayanont, Enhanced thermoelectric properties of Ca3Co4O9 by post sintering method, JMSAE. 5 (2016) 48-51.

Google Scholar

[17] S. Chen, X. Song, X. Chen, Y. Chen, E.J. Barbero, E.L. Thomas, P. N. Barnes, Effect of precursor calcination temperature on the microstructure and thermoelectric properties of Ca3Co4O9 ceramics, J. Sol-Gel Sci. Technol. 64 (2012) 627-636.

DOI: 10.1007/s10971-012-2894-4

Google Scholar

[18] C.A. Randall, N. Kim, J.P. Kucera, W.J. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics, J. Am. Ceram. Soc. 81 (1998) 677-688.

DOI: 10.1111/j.1151-2916.1998.tb02389.x

Google Scholar