Physical, Dielectric Properties and Micro-Hardness of the (Ba0.90Ca0.10)0.90(Na0.50Bi0.50)0.10TiO3 Ceramics Prepared by Molten Salt Method

Article Preview

Abstract:

In this study, the physical properties, dielectric properties, and micro-hardness of (Ba0.90Ca0.10)0.90(Na0.50Bi0.50)0.10TiO3 or BCT-NBT ceramics prepared by molten salt method with various sintering temperatures were investigated. The powders were calcined at 500-1100°C for 4 h with heating rate of 5°C/min. It was found that the optimum calcination condition was 1000°C for 4 h. These powders were pressed and sintered at 1200-1400°C for 3 h with a heating rate of 5°C/min. The microstructure was examined by scanning electron microscope (SEM). The density of the sintered samples was measured by Archimedes method with distilled water as the fluid medium. Dielectric properties were examined by LCR meter. The micro-hardness of the BCT-NBT ceramics was determined using the Vickers and Knoop indentation techniques. The results showed that the average grain sizes increased with increasing sintering temperatures. At sintering temperatures higher than 1200°C, the fracture mode changed from partial intra-granular to mainly intra-granular. The sintering temperature at which the density, dielectric and hardness properties were maximal was 1350°C. The highest density was about 5.4 g/cm3, and the Vickers and Knoop micro-hardnesses were 6.6 and 6.4 GPa, respectively. The dielectric constant at the Curie temperature was 3682 and the dielectric loss was 0.01 at 1 kHz frequency.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

132-139

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties Ba(Ti1-xZrx)O3 ceramics, J. Appl. Phys. 92 (2002) 1489-1493.

DOI: 10.1063/1.1487435

Google Scholar

[2] Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Dielectric properties of Ba(Ti1-xZrx)O3 solid solutions, Mater. Lett. 61 (2007) 326-329.

DOI: 10.1016/j.matlet.2006.04.098

Google Scholar

[3] A. Dixit, S.B. Majumder, A. Savvinov, R.S. Katiyar, R. Guo, A.S. Bhalla, Investigations on the sol-gel-derived barium zirconium titanate thin films, Mater. Lett. 56 (2002) 933-940.

DOI: 10.1016/s0167-577x(02)00640-7

Google Scholar

[4] L.Y. Li, X.G. Tang, Effect of electric field on the dielectric properties and ferroelectric phase transition of sol-gel derived (Ba0.90Ca0.10)TiO3 ceramics, Mater. Chem. Phys. 115 (2009) 507-511.

DOI: 10.1016/j.matchemphys.2009.01.023

Google Scholar

[5] L. Zhang, O.P. Thakur, A. Feteira, G.M. Keith, A.G. Mould, D.C. Sinclair, A.R. West, Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics, Appl. Phys. Lett. 90 (2007) 142914.

DOI: 10.1063/1.2720305

Google Scholar

[6] G.A. Smolenski, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, New ferroelectrics of complex composition, Sov. Phys. Solid State. 2 (1961) 2651-2654.

Google Scholar

[7] S. Yun, X. Wang, J. Shi, D. Xu, Effects of chemical modification on the structural and electrical properties of (Ba0.90Ca0.10)0.90(Na0.5Bi0.5)0.10TiO3 ceramics, J. Alloy. Compd. 485 (2009) 610-615.

Google Scholar

[8] T. Takenaka, K. Maruyama, K. Sakata, (Bi,Na)TiO3-BaTiO3 System for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 (1991) 2236-2239.

DOI: 10.1143/jjap.30.2236

Google Scholar

[9] B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. 22 (2002) 2115-2121.

DOI: 10.1016/s0955-2219(02)00027-4

Google Scholar

[10] L.F. Gao, Y.Q. Huang, Y. Hu, H.Y. Du, Dielectric and ferroelectric properties of (1-x)BaTiO3-(x)Bi1/2Na1/2TiO3 Ceramics, Ceram. Int. 33 (2007) 1041-1046.

DOI: 10.1016/j.ceramint.2006.03.006

Google Scholar

[11] Y.F. Qu, D. Shan, J.J. Song, Effect of A-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics, Mater. Sci. Eng. B. 121 (2005) 148-151.

DOI: 10.1016/j.mseb.2005.03.023

Google Scholar

[12] J. Suchanicz, J. Kusz, H. Böhm, H. Duda, J.P. Mercurio, K. Konieczny, Structural and dielectric properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 ceramics, J. Eur. Ceram. Soc. 23 (2003) 1559-1564.

DOI: 10.1016/s0955-2219(02)00406-5

Google Scholar

[13] J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira, J.P. Mercurio, Ferroelectric relaxor behaviour of Na0.5Bi0.5TiO3-SrTiO3 ceramics, Phys. Stat. Sol. B. 241 (2004) 1949-(1956).

DOI: 10.1002/pssb.200302020

Google Scholar

[14] M.N. Rahaman, 2003 Ceramic Processing and Sintering (2nd edition), Marcel Dekker, 0-82470-988-8 York, USA.

Google Scholar

[15] Powder Diffraction File, Card No. 81-0042, Joint Committee for Powder Diffraction Standards (JCPDS) PDF-4, International Centre for Diffraction Data (ICDD) (2000).

DOI: 10.1017/s0885715600011635

Google Scholar

[16] Powder Diffraction File, Card No. 36-0340, Joint Committee for Powder Diffraction Standards (JCPDS) PDF-4, International Centre for Diffraction Data (ICDD) (2000).

DOI: 10.1017/s0885715600016377

Google Scholar

[17] C. Puchmark, S. Jiansirisomboon, G. Rujijanagul, T. Tunkasiri, N. Vittayakorn, T. Comyn, S.J. Milne, Mechanical property evaluation of PZT/Al2O3 composites prepared by a simple solid-state mixed oxide method, Curr. Appl. Phys. 6 (2006) 323-326.

DOI: 10.1016/j.cap.2005.11.010

Google Scholar

[18] K. Tajima, H.J. Hwang, M. Sando, K. Niihara, Electric-field-induced crack growth behavior in PZT/Al2O3 composites, J. Am. Ceram. Soc. 83 (2000) 651-653.

DOI: 10.1111/j.1151-2916.2000.tb01248.x

Google Scholar

[19] C. Puchmark, G. Rujijanagul, S. Jiansirisomboon, T. Tunkasiri, Effect of sintering temperature on phase transition and mechanical properties of lead zirconate ceramics. Ferroelectrics Lett, 31 (2004) 1-13.

DOI: 10.1080/07315170490449763

Google Scholar

[20] X. Yuan, X. Liu, L. Wang, X. Lu, Density and hardness of Nd-doped zircon ceramics as nuclear waste forms, IOP Conf. Ser.: Earth Environ. Sci. 61 (2017) 012140.

DOI: 10.1088/1755-1315/61/1/012140

Google Scholar

[21] H.I. Hsiang, C.S. Hsi, C.C. Huang, S.L. Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC, J. Alloy. Compd. 459 (2008) 307-310.

DOI: 10.1016/j.jallcom.2007.04.218

Google Scholar

[22] V.A. Chaudhari, G.K. Bichile, Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics, Smart Materials Research Article ID 147524 (2013) 9 pages.

DOI: 10.1155/2013/147524

Google Scholar

[23] S. Pattipaka, P. Mahesh, D. Pamu, Structural and dielectric properties of lead free Bi0.5Na0.5TiO3 ceramics, AIP Conference Proceedings 1728 (2016) 10.1063/1.4946403.

DOI: 10.1063/1.4946403

Google Scholar