Structure and Electrical Properties of BNKT-Based Ceramics

Article Preview

Abstract:

In this work, the properties of lead-free 0.92(Bi0.5Na0.42K0.08)TiO3-0.08(BaNb0.01Ti0.99)O3 or 92BNKT-8BNbT ceramic has been investigated. The sample was fabricated by a solid-state reaction technique. The 92BNKT-8BNbT sample was well sintered and dense with high density value of 5.86 g/cm3. X-Ray diffraction (XRD) patterns showed a single perovskite phase with tetragonal symmetry and no impurity or secondary phases. The microstructure was analysed using a scanning electron microscopy (SEM). Average grain size was measured and calculated based on a mean linear intercept method. The ceramics had a cubic-like grain shape with an average grain size of 0.39 µm. The influence of temperature on the dielectric and ferroelectric properties of the ceramic was investigated. The dielectric curves exhibited broad transition peaks at Td and Tm, which were the characteristics of a diffuse phase transition. The polarization-electric field (P-E) hysteresis loop changed from well-saturated at room temperature (RT) to pinched-type loop at high temperature (HT) and the remanent polarization decreased from 21.25 µC/cm2 (at RT) to 5.96 µC/cm2 (at 150 °C).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

147-153

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Xu, M.T. Lanagan, W. Luo, L. Zhang, J. Xi, H. Hao, M. Cao, Z. Yao, H. Liu, Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3, J. Eur. Ceram. Soc. 36 (2016) 2469-2477.

DOI: 10.1016/j.jeurceramsoc.2016.03.011

Google Scholar

[2] Y.H. Kwon, D.J. Shin, G.H. Lee, J.H. Koh, Sintering temperature dependent piezoelectric properties of (Bi,Na)TiO3-(Ba,Sr)TiO3 ceramics, Ceram. Int. 42 (2016) 10422-10427.

DOI: 10.1016/j.ceramint.2016.03.185

Google Scholar

[3] R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, Rietveld refinement, impedance spectroscopy and magnetic properties of Bi0.8Sr0.2FeO3 substituted Na0.5Bi0.5TiO3 ceramics, J. Magn. Magn. Mater. 414 (2016) 1-9.

DOI: 10.1016/j.jmmm.2016.04.020

Google Scholar

[4] N.B. Do, H.D. Jang, I. Hong, H.S. Han, D.T. Le, W.P. Tai, J.S. Lee, Low temperature sintering of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 piezoelectric ceramics by co-doping with CuO and Nb2O5, Ceram. Int. 38S (2012) S359-S362.

DOI: 10.1016/j.ceramint.2011.05.012

Google Scholar

[5] T.H. Dinh, M.R. Bafandeh, J.K. Kang, C.H. Hong, W. Jo, Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics, Ceram. Int. 41 (2015) s458-s463.

DOI: 10.1016/j.ceramint.2015.03.150

Google Scholar

[6] A. Ullah, A. Ullah, W.S. Woo, C.W. Ahn, I.W. Kim, Dielectric spectroscopy of lead-free Bi0.5(Na0.75K0.25)0.5TiO3-BiAlO3 ceramics, Ceram. Int. 40 (2014) 11335-11342.

DOI: 10.1016/j.ceramint.2014.03.116

Google Scholar

[7] B. Cui, P. Yu, J. Tian, H. Guo, Z. Chang, Preparation and characterization of niobium-doped barium titanate nanocrystalline powders and ceramics, Mater. Sci. Eng. A 454-455 (2007) 667-672.

DOI: 10.1016/j.msea.2006.11.115

Google Scholar

[8] S. Wang, S. Zhang, X. Zhou, B. Li, Z. Chen, Investigation on dielectric properties of BaTiO3 co-doped with Ni and Nb, Mater. Lett. 60 (2006) 909-911.

DOI: 10.1016/j.matlet.2005.10.043

Google Scholar

[9] J. Sun, S.T. Wang, L. Tong, Q.J. Li, Y. Yu, Y.D. Li, S.G. Huang, Y.M. Guo, C.C. Wang, Enhanced dielectric properties in (In, Nb) co-doped BaTiO3 ceramics, Mater. Lett. 200 (2017) 51-54.

DOI: 10.1016/j.matlet.2017.04.044

Google Scholar

[10] Y.J. Kim, J.W. Hyun, H.S. Kim, J.H. Lee, M.Y. Yun, S.J. Noh, and Y.H. Ahn, Microstructural characterization and dielectric properties of barium titanate solid solutions with donor dopants, Bull. Korean Chem. Soc. 30 (2009) 1267-1273.

DOI: 10.5012/bkcs.2009.30.6.1267

Google Scholar

[11] A. Ullah, C.W. Ahn, S.Y. Lee, J.S. Kim, I.W. Kim, Structure, ferroelectric properties, and electric field-induced large strain in lead-free Bi0.5(Na, K)0.5TiO3-(Bi0.5La0.5)AlO3 piezoelectric ceramics, Ceram. Int. 38S (2012) S363-S368.

DOI: 10.1016/j.ceramint.2011.05.013

Google Scholar

[12] G. Liu, H. Fann, J. Shi, Z. Liu, Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics, Ceram. Int. 42 (2016) 3938-3946.

DOI: 10.1016/j.ceramint.2015.11.062

Google Scholar

[13] S. Bhandari, N. Sinha, B. Kumar, Enhanced microstructure and electrical properties of Mn-modified Bi0.5(Na0.65K0.35)0.5TiO3 ferroelectric ceramics, Ceram. Int. 42 (2016) 4274-4284.

DOI: 10.1016/j.ceramint.2015.11.104

Google Scholar

[14] V. Chauhan, S.K. Ghosh, A. Hussain, S.K. Rout, Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics, J. Alloys. Comp. 674 (2016) 413-424.

DOI: 10.1016/j.jallcom.2016.02.231

Google Scholar

[15] J. Yoo, D. Oh, Y. Jeong, J. Hong, M. Jung, Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr, Mater. Lett. 58 (2004) 3831-3835.

DOI: 10.1016/j.matlet.2004.08.011

Google Scholar

[16] Q. Zheng, J. Ma, D. Lin, Microstructure, dielectric and piezoelectric properties of La-modified Bi0.5(Na0.84K0.16)0.5TiO3 lead-free ceramics, J. Mater. Sci: Mater. Electron. (2013) 3836-3843.

DOI: 10.1007/s10854-013-1326-8

Google Scholar

[17] A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall Press, New York (1996).

Google Scholar

[18] A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, I.W. Kim, Phase Transition, electrical properties, and temperature-insensitive large strain in BiAlO3-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 94 (2011).

DOI: 10.1111/j.1551-2916.2011.04595.x

Google Scholar

[19] A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3-SrZrO3 ceramics, Mater. Chem. Phys. 143 (2014) 1282-1288.

DOI: 10.1016/j.matchemphys.2013.11.035

Google Scholar

[20] A. Sasaki, T. Chiba, Y. Mamiya1, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys. 38 (1999) 5564-5567.

Google Scholar

[21] G.H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (1999) 797-818.

Google Scholar

[22] D. Shihua, S. Tianxiu, Y. Xiaojing, L. Guanghua, Effect of grain size of BaTiO3 ceramics on dielectric properties, Ferroelectrics, 402 (2010) 55-59.

DOI: 10.1080/00150191003697377

Google Scholar

[23] X. Liu, J. Zhai, B. Shen, F. Li, Y. Zhang, P. Li, B. Liu, Study of temperature-induced structural evolution in (Na0.5Bi0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3 lead-free ceramics, Curr. Appl. Phys. 17(2017) 774-780.

DOI: 10.1016/j.cap.2017.02.023

Google Scholar

[24] R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, M.H. Kim, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics, J. Alloys. Comp. 682 (2016) 302-310.

DOI: 10.1016/j.jallcom.2016.04.297

Google Scholar

[25] J. Hao, X. Zhang, Z. Xu, R.Chu, W. Li, P. Fu, J. Du, Field-induced large strain in lead-free 0.99[(1-x)Bi0.5(Na0.80K0.20)0.5TiO3-xBiFeO3]-0.01(K0.5Na0.5)NbO3 piezoelectric ceramics, Ceram. Int. 42 (2016) 12964-12970.

DOI: 10.1016/j.ceramint.2016.05.069

Google Scholar