Synthesis of Copper Oxide Nanopowder by Microwave Method

Article Preview

Abstract:

Copper oxide nanopowder was successfully synthesized by microwave method. Copper acetate and sodium hydroxide were used as the starting precursors. The microwave power was set to 800 Watt for 2-6 min and fine black nanopowder was obtained. The nanopowder was milled and dried at 80 °C for 12 h. The structure was identified by X-ray diffractometer (XRD). A monoclinic single phase of CuO nanopowder structure was obtained without calcination steps. The morphology was investigated by scanning electron microscope (FESEM). The particle was irregular in shape and agglomerated. The chemical composition was determined by energy dispersive X-ray spectrometer (EDXS). The chemical compositions showed the characteristic X-ray energy of copper (Kα=8.048 keV) and oxygen (Kα=0.525 keV), respectively. The functional group was investigated by fourier transform infrared spectrometer (FTIR). The functional groups of the vibration Cu-O bending showed the wavenumber at 491-615 cm-1.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

154-159

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.H. Tran, V.T. Nguyen, Copper oxide nanomaterials prepared by solution methods, Some Properties, and potential applications: A Brief Review. Hindawi Publishing corporation international scholarly research notices. 2014 (2014) 1-14.

DOI: 10.1155/2014/856592

Google Scholar

[2] Y. Yecheskel, I. Dror, B. Berkowitz, Catalytic degradation of brominated flame retardants by copper oxide nanoparticles, Chemosphere 93 (2012) 172–177.

DOI: 10.1016/j.chemosphere.2013.05.026

Google Scholar

[3] A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route, Physica B. 406 (2011) 144-149.

DOI: 10.1016/j.physb.2010.09.038

Google Scholar

[4] Y. Li, J. Liang, Z. Tao, J. Chen, CuO particles and plates: synthesis and gas-sensor application, Mater. Res. Bull. 43 (2008) 2380-2385.

DOI: 10.1016/j.materresbull.2007.07.045

Google Scholar

[5] X. Wang and X. Xu, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Tr. 13, (1999) 474–480.

Google Scholar

[6] S. Ishio, T. Narisawa, S. Takahashi, Y. Kamata, S. Shibata, T. Hasegawa, Z. Yan, X. Liu, H. Yamane, Y. Kondo, J. Ariake, L10 FePt thin films with [001] crystalline growth fabricated by SiO2 addition-rapid thermal annealing and dot patterning of the films, J. Magn. Magn. Mater. 324 (2012) 295–302.

DOI: 10.1016/j.jmmm.2010.12.014

Google Scholar

[7] V. Kumar, S. M-Panah, C.C. Tan, T.K.S. Wong, D.Z. Chi, G.K. Dalapati, Copper oxide based low cost thin film solar cells, in Proceedings of the IEEE 5th International Nanoelectronics Conference (INEC '13). (2013) 443-445.

DOI: 10.1109/inec.2013.6466072

Google Scholar

[8] C. Ma, L. Zhu, S. Chen, Y. Zhao, Simple and rapid preparation of CuO nanowires and their optical properties, Mater. Lett. 108 (2013) 114˗117.

DOI: 10.1016/j.matlet.2013.06.101

Google Scholar

[9] Y. Xu, D. Chen, X. Jiao, Fabrication of CuO pricky microspheres with tunable size by a simple solution route, J. Phys. Chem. B. 109 (2005) 13561˗13566.

DOI: 10.1021/jp051577b

Google Scholar

[10] N. Ba, L. Zhu, H. Li, G. Zhang, J. Li, J. Sun, 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism, Solid State Sci. 53 (2016) 23˗29.

DOI: 10.1016/j.solidstatesciences.2016.01.004

Google Scholar

[11] S. Cho, Optical, electrical properties of CuO thin films deposited at several growth temperatures by reactive RF magnetron sputtering, Met. Mater. Int. 19 (2013) 1327˗1331.

DOI: 10.1007/s12540-013-6030-y

Google Scholar

[12] X.-D. Yang, L.-L. Jiang, C.-J. Mao, H.-L. Niu, J.-M. Song, S.-Y. Zhang, Sonochemical synthesis and nonlinear optical property of CuO hierarchical superstructures, Mater. Lett. 115 (2014) 121–124.

DOI: 10.1016/j.matlet.2013.10.037

Google Scholar

[13] M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism, Appl. Surf. Sci. 255 (2009).

DOI: 10.1016/j.apsusc.2009.02.002

Google Scholar

[14] B. Toboonsung, P. Singjai, Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process, J. Alloy. Compd. 509 (2011) 4132–4137.

DOI: 10.1016/j.jallcom.2010.12.180

Google Scholar

[15] K. Han, M. Tao, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Sol. Energy. Mat. Sol. Cells. 93 (2009) 153–157.

DOI: 10.1016/j.solmat.2008.09.023

Google Scholar

[16] W.-W. Wang, Y.-J. Zhu, G.-F. Cheng, Y.-H. Huang, Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers, Mater. Lett. 60 (2006) 609˗612.

DOI: 10.1016/j.matlet.2005.09.056

Google Scholar

[17] X. Xu, M. Zhang, J. Feng, M. Zhang, Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid, Mater. Lett. 62 (2008) 2787˗2790.

DOI: 10.1016/j.matlet.2008.01.046

Google Scholar

[18] L. Guo, F. Tong, H. Liu, H. Yang, J. Li, Shape-controlled synthesis of self-assembly cubic CuO nanostructures by microwave, Mater. Lett. 71 (2012) 32–35.

DOI: 10.1016/j.matlet.2011.11.105

Google Scholar

[19] S.K. Sharma, R. Ghose, Synthesis of nanocrystalline copper oxide with dandelion-like morphology by homogeneous precipitation method, J. Mol. Struct. 1076 (2014) 651–657.

DOI: 10.1016/j.molstruc.2014.07.064

Google Scholar

[20] R.A. Kӧppel, C. Stӧcker, A. Baiker, Copper-and silver-zirconia aerogels: Preparation, structural properties and catalytic behaviour in methanol synthesis from carbon dioxide, J. Catal. 179 (1998) 515–527.

DOI: 10.1006/jcat.1998.2252

Google Scholar

[21] T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu, W.H. Su, Investigation of individual CuO nanorods by polarized micro-Raman scattering, J. Cryst. Growth. 268 (2004) 590–595.

DOI: 10.1016/j.jcrysgro.2004.04.097

Google Scholar

[22] G. Varughese, V. Rini, S.P. Suraj, K.T. Usha, Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions, Advances in materials science 14 (2014) 49-60.

DOI: 10.2478/adms-2014-0021

Google Scholar

[23] B. Lefez, R. Souchet, K. Kartouni, M. Lenglet, Infrared reflection study of CuO in thin oxide films, Thin Solid Films. 268 (1995) 45–48.

DOI: 10.1016/0040-6090(95)06872-4

Google Scholar