[1]
T.H. Tran, V.T. Nguyen, Copper oxide nanomaterials prepared by solution methods, Some Properties, and potential applications: A Brief Review. Hindawi Publishing corporation international scholarly research notices. 2014 (2014) 1-14.
DOI: 10.1155/2014/856592
Google Scholar
[2]
Y. Yecheskel, I. Dror, B. Berkowitz, Catalytic degradation of brominated flame retardants by copper oxide nanoparticles, Chemosphere 93 (2012) 172–177.
DOI: 10.1016/j.chemosphere.2013.05.026
Google Scholar
[3]
A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route, Physica B. 406 (2011) 144-149.
DOI: 10.1016/j.physb.2010.09.038
Google Scholar
[4]
Y. Li, J. Liang, Z. Tao, J. Chen, CuO particles and plates: synthesis and gas-sensor application, Mater. Res. Bull. 43 (2008) 2380-2385.
DOI: 10.1016/j.materresbull.2007.07.045
Google Scholar
[5]
X. Wang and X. Xu, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Tr. 13, (1999) 474–480.
Google Scholar
[6]
S. Ishio, T. Narisawa, S. Takahashi, Y. Kamata, S. Shibata, T. Hasegawa, Z. Yan, X. Liu, H. Yamane, Y. Kondo, J. Ariake, L10 FePt thin films with [001] crystalline growth fabricated by SiO2 addition-rapid thermal annealing and dot patterning of the films, J. Magn. Magn. Mater. 324 (2012) 295–302.
DOI: 10.1016/j.jmmm.2010.12.014
Google Scholar
[7]
V. Kumar, S. M-Panah, C.C. Tan, T.K.S. Wong, D.Z. Chi, G.K. Dalapati, Copper oxide based low cost thin film solar cells, in Proceedings of the IEEE 5th International Nanoelectronics Conference (INEC '13). (2013) 443-445.
DOI: 10.1109/inec.2013.6466072
Google Scholar
[8]
C. Ma, L. Zhu, S. Chen, Y. Zhao, Simple and rapid preparation of CuO nanowires and their optical properties, Mater. Lett. 108 (2013) 114˗117.
DOI: 10.1016/j.matlet.2013.06.101
Google Scholar
[9]
Y. Xu, D. Chen, X. Jiao, Fabrication of CuO pricky microspheres with tunable size by a simple solution route, J. Phys. Chem. B. 109 (2005) 13561˗13566.
DOI: 10.1021/jp051577b
Google Scholar
[10]
N. Ba, L. Zhu, H. Li, G. Zhang, J. Li, J. Sun, 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism, Solid State Sci. 53 (2016) 23˗29.
DOI: 10.1016/j.solidstatesciences.2016.01.004
Google Scholar
[11]
S. Cho, Optical, electrical properties of CuO thin films deposited at several growth temperatures by reactive RF magnetron sputtering, Met. Mater. Int. 19 (2013) 1327˗1331.
DOI: 10.1007/s12540-013-6030-y
Google Scholar
[12]
X.-D. Yang, L.-L. Jiang, C.-J. Mao, H.-L. Niu, J.-M. Song, S.-Y. Zhang, Sonochemical synthesis and nonlinear optical property of CuO hierarchical superstructures, Mater. Lett. 115 (2014) 121–124.
DOI: 10.1016/j.matlet.2013.10.037
Google Scholar
[13]
M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism, Appl. Surf. Sci. 255 (2009).
DOI: 10.1016/j.apsusc.2009.02.002
Google Scholar
[14]
B. Toboonsung, P. Singjai, Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process, J. Alloy. Compd. 509 (2011) 4132–4137.
DOI: 10.1016/j.jallcom.2010.12.180
Google Scholar
[15]
K. Han, M. Tao, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Sol. Energy. Mat. Sol. Cells. 93 (2009) 153–157.
DOI: 10.1016/j.solmat.2008.09.023
Google Scholar
[16]
W.-W. Wang, Y.-J. Zhu, G.-F. Cheng, Y.-H. Huang, Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers, Mater. Lett. 60 (2006) 609˗612.
DOI: 10.1016/j.matlet.2005.09.056
Google Scholar
[17]
X. Xu, M. Zhang, J. Feng, M. Zhang, Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid, Mater. Lett. 62 (2008) 2787˗2790.
DOI: 10.1016/j.matlet.2008.01.046
Google Scholar
[18]
L. Guo, F. Tong, H. Liu, H. Yang, J. Li, Shape-controlled synthesis of self-assembly cubic CuO nanostructures by microwave, Mater. Lett. 71 (2012) 32–35.
DOI: 10.1016/j.matlet.2011.11.105
Google Scholar
[19]
S.K. Sharma, R. Ghose, Synthesis of nanocrystalline copper oxide with dandelion-like morphology by homogeneous precipitation method, J. Mol. Struct. 1076 (2014) 651–657.
DOI: 10.1016/j.molstruc.2014.07.064
Google Scholar
[20]
R.A. Kӧppel, C. Stӧcker, A. Baiker, Copper-and silver-zirconia aerogels: Preparation, structural properties and catalytic behaviour in methanol synthesis from carbon dioxide, J. Catal. 179 (1998) 515–527.
DOI: 10.1006/jcat.1998.2252
Google Scholar
[21]
T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu, W.H. Su, Investigation of individual CuO nanorods by polarized micro-Raman scattering, J. Cryst. Growth. 268 (2004) 590–595.
DOI: 10.1016/j.jcrysgro.2004.04.097
Google Scholar
[22]
G. Varughese, V. Rini, S.P. Suraj, K.T. Usha, Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions, Advances in materials science 14 (2014) 49-60.
DOI: 10.2478/adms-2014-0021
Google Scholar
[23]
B. Lefez, R. Souchet, K. Kartouni, M. Lenglet, Infrared reflection study of CuO in thin oxide films, Thin Solid Films. 268 (1995) 45–48.
DOI: 10.1016/0040-6090(95)06872-4
Google Scholar