Titanium Dioxide Doped with Nitrogen Nanopowder Prepared by Hydrothermal Method

Article Preview

Abstract:

Nitrogen-doped titanium dioxide (N-doped TiO2) nanopowder was successfully prepared by the hydrothermal method. Titanium isopropoxide and urea were used as the starting precursors. The hydrothermal reaction was controlled at 200 °C for 2, 4 and 6 h. The white powder was obtained and dried for 24h. The crystal structure was identified by X-ray diffraction (XRD). A single phase of anatase structure was obtained without calcination steps. The morphology was investigated by field emission scanning electron microscopy (FESEM). The particles were irregular in shape and highly agglomerated. The chemical composition was determined by energy dispersive X-ray spectrometry (EDXS). The characteristic X-ray energy of titanium (Kα = 4.51 keV and Kβ = 4.93 keV), oxygen (Kα = 0.52 keV) and nitrogen (Kα = 0.39 keV) were observed. The functional group was identified by Fourier transform infrared spectrophotometry (FTIR). The wavenumbers in the range 668 to 1389 cm-1 corresponded to vibrations of Ti–O–Ti bond. The wavenumber in the range of 1442 to 1500 cm-1 could be attributed to the nitrogen species in the TiO2 network.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

167-172

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Pérez, M.F. Torres, G. Morales, V. Murgia, E. Sham, Synthesis of N-TiO2 effect of the concentration of nitrogen in the band gap, Procedia Mater. Sci. 8 (2015) 649–655.

DOI: 10.1016/j.mspro.2015.04.121

Google Scholar

[2] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B: Environ. 125 (2012).

DOI: 10.1016/j.apcatb.2012.05.036

Google Scholar

[3] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Ch. 32 (2004) 33–177.

Google Scholar

[4] G.M. Neelgund, S.A. Shivashankar, B.K. Chethana, P.P. Sahoo, K.J. Rao, Nanocrystalline TiO2 preparation by microwave route and nature of anatase–rutile phase transition in nano TiO2, Bull. Mater. Sci. 34 (2011) 1163–1171.

DOI: 10.1007/s12034-011-0165-6

Google Scholar

[5] S.A. Bakar, C. Ribeiro, Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties, Appl. Surf. Sci. 377 (2016) 121–133.

DOI: 10.1016/j.apsusc.2016.03.137

Google Scholar

[6] P. Pookmanee, T. Kuntatun, W. Kangwansupamomkon, S. Phanichphant, Titanium dioxide powder prepared by a low temperature hydrothermal method, Adv. Mater. Res. 93-94 (2010) 627–630.

DOI: 10.4028/www.scientific.net/amr.93-94.627

Google Scholar

[7] S. Suphankij, W. Mekprasart, W. Pecharapa, Photocatalytic of N-doped TiO2 nanofibers prepared by electrospinning, Energy Procedia 34 (2013) 751–756.

DOI: 10.1016/j.egypro.2013.06.810

Google Scholar

[8] A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Preparation of N- doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of malathion, Spectrochim. Acta Part A 133 (2014) 669–676.

DOI: 10.1016/j.saa.2014.06.020

Google Scholar

[9] A.J. Haider, R.H.AL- Anbari, G.R. Kadhim, C.T. Salame, Exploring potential environmental applications of TiO2 nanoparticles, Energy Procedia 119 (2017) 332–345.

DOI: 10.1016/j.egypro.2017.07.117

Google Scholar

[10] D. Wu, M. Long, W. Cai, C. Chen, Y. Wu, Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity, J. Alloy. Compd. 502 (2010) 289–294.

DOI: 10.1016/j.jallcom.2010.04.189

Google Scholar

[11] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 21–1272, Swarthmore, PA.

Google Scholar

[12] E. Pérez, L. Vittorio, M.F. Torres, E. Sham, Nitrogen doped TiO2 photoactive in visible light, Rev. Mat. 20 (2015) 561-570.

Google Scholar

[13] L. Hu, J. Wang, J. Zhang, Q. Zhang, Z. Liu, An N-doped anatase/rutile TiO2 hybrid from low-temperature direct nitridization: enhanced photoactivity under UV-/visible-light, RSC Adv. 4 (2014) 420–427.

DOI: 10.1039/c3ra44421j

Google Scholar

[14] T.P. Dhanya, S. Sugunan, Preparation, characterization and photocatalytic activity of N doped TiO2, IOSR J. Appl. Chem. 4(3) (2013) 27–33.

Google Scholar

[15] A. Selvaraj, R. Parimiladevi, K.B. Rajesh, Synthesis of Nitrogen Doped Titanium Dioxide (TiO2) and its Photocatalytic Performance for the Degradation of Indigo Carmine Dye, J. Environ. Nanotechnol 2 (2013) 35-41.

DOI: 10.13074/jent.2013.02.121026

Google Scholar

[16] K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light, Ceram. Int. 42 (2016) 14834–14842.

DOI: 10.1016/j.ceramint.2016.06.117

Google Scholar

[17] P. Pookmanee, H. Ninsonti1, S. Sangsrichan, W. Kangwansupamomkon, S. Phanichphant, Photocatalytic degradation of geosmin by titanium dioxide powder synthesized by the hydrothermal route, Adv. Mater. Res. 99-94 (2010) 161–164.

DOI: 10.4028/www.scientific.net/amr.93-94.161

Google Scholar

[18] S. Chainarong, L. Sikong, S. Pavasupree, S. Niyomwas, Synthesis and characterization of nitrogen-doped TiO2 nanomaterials for photocatalytic activities under visible light, Energy Procedia 9 (2011) 418– 427.

DOI: 10.1016/j.egypro.2011.09.046

Google Scholar

[19] S.J. Darzi, A.R. Mahjoub, S. Sarfi, Visible-light-active nitrogen doped TiO2 nanoparticles prepared by sol-gel acid catalyzed reaction, Iran. J. Mat. Sci. Eng. 9 (2012) 17–23.

Google Scholar