Modeling Calculation of the Corrosion Rate of Low Carbon Steel in Heat and Power Systems

Article Preview

Abstract:

This article is about electrochemical analysis system of passive films corrosion properties of the thermal power equipment heating surfaces. It was found that forecasting the low carbon steel corrosion rate in thermal power systems is possible based on the multiple regression equations, which includes the amount of silicon oxide and iron hydroxide phases in the films, the fraction of free area and the active component of impedance of the films in the alkaline electrolyte and mercury. Construction of the regression equation should be carried out with the preliminary classification of data on the quantities of the active component of the film impedance of mercury and an alkaline electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

1313-1317

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://gavr.org.ua.

Google Scholar

[2] A.A. Efimov, V.G. Semenov, M.M. Kostin, I.V. Miroshnichenko, Analiz fazovogo sostava otlozhenij produktov korrozii na poverhnostjah trubnogo puchka parogeneratora PG-440 metodommessbaujerovskojspektroskopii, Teplojenergetika, 2 (2009) 64-65.

Google Scholar

[3] T.I. Petrova, V.I. Kashinskij, V.N. Semenov, V.V. Makrushin, A.E. Verhovskij, Vlijanie teplovogo potoka na skorost' obrazovanija otlozhenij produktov korrozii zheleza i medi v kotlah, Teplojenergetika, 7 (2008) 2-5.

Google Scholar

[4] V.M. Krasnoperov, Model' osazhdenija produktov korrozii na neobogrevaemyh poverhnostjah truboprovodov, Teplojenergetika, 5 (2008) 36-38.

Google Scholar

[5] T.V. Kozlova, S.M. Lipkin, T.V. Lipkina, M.S. Lipkin, V.P. Breslavec, N.V. Shishka, Ul'janov A.V. Metody issledovanija i korrozionnyj monitoring, Korrozija: materialy, zashhita, 10 (2016) 36-38.

Google Scholar

[6] N.G. Nafikova, S.A. Kaluzhina, Osobennosti anodnogo povedenija zheleza v gidrokarbonatnyh sredah pri var''irovanii solesoderzhanija i termicheskih uslovij, Kondensirovannye sredy i mezhfaznye granicy, 13(2) (2011) 178-183.

Google Scholar

[7] N.G. Nafikova, S.A. Kaluzhina, L.N. Lapunina, Anodnoe povedenie zheleza v gidrokarbonatnyh sredah s dobavkami nitrat- i sul''fat- ionov v razlichnyh termicheskih uslovijah, Kondensirovannye sredy i mezhfaznye granicy, 12(2) (2010) 149-153.

Google Scholar

[8] A.M. Rubashov, Ju.V. Balaban-Irmenin, V.M. Lipovskih, Zashhita ot vnutrennej korrozii truboprovodov vodjanyh teplovyh setej, Moscow, «Novostiteplosnabzhenija», (2008).

Google Scholar

[9] P. Ghods, O.B. Isgor, F. Benseba, D. Kingston, Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution, Corrosion Science 58 (2012) 159-167.

DOI: 10.1016/j.corsci.2012.01.019

Google Scholar

[10] P. Ghods, Multi-scale investigation of the formation and breakdown of passive films on carbon steel rebar in concrete, Ph.D. Dissertation, Carleton University, Ottawa, (2010).

DOI: 10.22215/etd/2010-09550

Google Scholar

[11] P. Ghods, O.B. Isgor, G.A. McRae, G.P. Gu, Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions, Corrosion Science, 52 (2010) 1649-1659.

DOI: 10.1016/j.corsci.2010.02.016

Google Scholar

[12] H. BurakGunay, PouriaGhods, O. BurkanIsgor, Graham J.C. Carpenter, Xiaohua Wu, Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS, Applied Surface Science, 274 (2013) 195-202.

DOI: 10.1016/j.apsusc.2013.03.014

Google Scholar

[13] Liang Wei, Xiaolu Pang, Kewei Gao, Effect of small amount of H2S on the corrosion behavior of carbonsteel in the dynamic supercritical CO2 environments, Corrosion Science, 103 (2016) 132-144.

DOI: 10.1016/j.corsci.2015.11.009

Google Scholar

[14] J.I. Goldstein, Scanning electron microscopy and x-ray microanalysis. Springer.ISBN 0306472929, (2003).

Google Scholar

[15] A.T. Motta, Zirconium alloys for supercritical water reactor applications: challenges and possibilities, J. Nuclear Materials, 371 (2007) 61-75.

Google Scholar

[16] E.A. Lysenko, T.V. Lipkina, V.G. Shishka, M.S. Lipkin, Issledovanie produktov korrozii legirovannyh I uglerodistyh stalej v paroprovodah jenergeticheskogo oborudovanija, (2011) 25-33.

Google Scholar

[17] T.V. Kozlova, T.V. Lipkina, S.A. Pozhidaeva, Ju.N. Nikolaeva, Prognozirovanie zashhitnyh svojstv oksidnyh plenok metodamij elektrohimicheskoj diagnostiki, Problemy sinergetiki v tribologii, tribojelektrohimii, materialovedenii i mehatronike, Novocherkassk, (2015).

Google Scholar

[18] T.V. Kozlova, T.V. Lipkina, S.M. Lipkin, V.N. Volkov, Diagnostika zashhitnyh svojstv oksidnyh plenok na vnutrennih poverhnostjah paroprovodnyh trub na osnove jelektrohimicheskih metodov issledovanija, Kontrol'. Diagnostika, 12(210) (2015) 34-40.

Google Scholar

[19] T. Kozlova, T. Lipkina, A. Sedov, Electrochemical Oxide Films Corrosion Properties Diagnosis System for the Thermal Power Equipment Heating Surfaces, Materials Science Forum, 843 (2015)1662-9752, 62-67.

DOI: 10.4028/www.scientific.net/msf.843.62

Google Scholar

[20] RU Patent № 2463575, (2012).

Google Scholar

[21] Novyj spravochnik himika I tehnologa. Jelektrodnyeprocessy. Himicheskajakinetika I diffuzija. Kolloidnajahimija, ANONPO «Prfessional», (2004).

Google Scholar