Functional Characteristics of QD-InAs/GaAs Heterostructures with Potential Barriers AlGaAs and GaAs

Article Preview

Abstract:

In this paper we present the results of investigation of heterostructures with an array of InAs quantum dots grown on GaAs substrates with GaAs and AlGaAs front barriers for high-speed near-IR photodetectors. The thickness of the barrier layers did not exceed 30 nm. It is shown that the ion-beam deposition method makes it possible to grow quantum dots with lateral dimensions up to 30 nm and 15 nm height. The spectral dependences of the external quantum efficiency and dark current-voltage characteristics are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

182-187

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.L. Alfimova, L.S. Lunin, M.L. Lunina, D.A. Arustamyan, A.E. Kazakova, S.N. Chebotarev, Growth and properties of isoparametric InAlGaPAs/GaAs heterostructures, Semiconductors, 51 (2017) 1377-1384.

DOI: 10.1134/s1063782617100037

Google Scholar

[2] D.L. Alfimova, L.S. Lunin, M.L. Lunina, A.E. Kazakova, A.S. Pashchenko, S.N. Chebotarev, Synthesis and properties of InxAlyGa1–x–yPzAs1–z/GaAs heterostructures, Inorganic Materials, 53 (2017) 1217-1227.

DOI: 10.1134/s0020168517120019

Google Scholar

[3] D.A. Arustamyan, M.L. Lunina, L.S. Lunin, A.E. Kazakova, Quinary InAlGaPAs/GaAs solid solutions grown by temperature gradient zone melting, Journal of Physics: Conference Series, 917 (2017) 032016.

DOI: 10.1088/1742-6596/917/3/032016

Google Scholar

[4] M.L. Lunina, A.E. Kazakova, D.A. Arustamyan, Study of properties of multicomponent heterostructures based on AIIIBVcompounds, Solid State Phenomena, 265 (2017) 728-733.

DOI: 10.4028/www.scientific.net/ssp.265.728

Google Scholar

[5] A.N. Yatsenko, S.N. Chebotarev, V.N. Lozovskii, A.A.A. Mohamed, L.M. Goncharova, A.A. Varnavskaya, Germanium layers grown by zone thermal crystallization from a discrete liquid source, Journal of Physics: Conference Series, 917 (2017) 032008.

DOI: 10.1088/1742-6596/917/3/032008

Google Scholar

[6] S.N. Chebotarev, A.N. Yatsenko, V.N. Lozovskii, A.A.A. Mohamed, G.A. Erimeev, Zone thermal recrystallization of thin layers from a discrete source, ARPN Journal of Engineering and Applied Sciences, 12 (2017) 1453-1457.

DOI: 10.1088/1742-6596/917/3/032008

Google Scholar

[7] S.N. Chebotarev, A.N. Yatsenko, L.S. Lunin, Features of zone thermal recrystallization of germaniun layers grown on silicon substrates from a discrete source, Solid State Phenomena, 265 (2017) 620-626.

DOI: 10.4028/www.scientific.net/ssp.265.620

Google Scholar

[8] M. Zavvari, V. Ahmadi, A. Mir, High performance avalanche quantum dot photodetector for mid-infrared detection, Optical and Quantum Electronics, 47 (2015) 1207–1217.

DOI: 10.1007/s11082-014-9977-0

Google Scholar

[9] B. Tongbram, S. Shetty, H. Ghadi, S. Adhikary, S. Chakrabarti, Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors, Applied Physics A, 118 (2015).

DOI: 10.1007/s00339-014-8854-9

Google Scholar

[10] R.V. Shenoi, J. Rosenberg, T.E. Vandervelde, Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities, IEEE Journal of quantum electronics, 46 (2010) 1051-1057.

DOI: 10.1109/jqe.2010.2042682

Google Scholar

[11] N.S. Beattie, G. Zoppi, P. See, I. Farrer, M. Duchamp, D.J. Morrison, R.W. Miles, D.A. Ritchie. Analysis of InAs/GaAs quantum dot solar cells using Suns-Voc measurements, Solar Energy Materials & Solar Cells, 100 (2014) 241–245.

DOI: 10.1016/j.solmat.2014.07.022

Google Scholar

[12] D.A. Ramirez, J. Shao, M.M. Hayat, S. Krishna, Midwave infrared quantum dot avalanche photodiode, Applied Physics Letters, 97 (2010) 212-215.

DOI: 10.1063/1.3520519

Google Scholar

[13] S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, E.N. Zhivotova, G.A. Erimeev, M.L. Lunina, Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering, Beilstein Journal of Nanotechnology, 8 (2017) 12-20.

DOI: 10.3762/bjnano.8.2

Google Scholar

[14] L.S. Lunin, I.A. Sysoev, D.L. Alfimova, S.N. Chebotarev, A.S. Pashchenko, Photoluminescence of i-GaxIn1-xAs/n-GaAs heterostructures containing a random InAs quantum dot array, Inorganic Materials. 47 (2011) 816-818.

DOI: 10.1134/s0020168511080103

Google Scholar

[15] S. Chebotarev, A. Pashchenko, L. Lunin, V. Irkha, Mass transfer of semiconductors at low flow argon ion beam sputtering, International Journal of Applied Engineering Research, 11 (2016) 1622-1629.

Google Scholar

[16] V.N. Brudnyi, S. N. Grinyaev, Optical absorption spectra of Si with Ge quantum dots, Russian Physics Journal, 53 (2010) 703–705.

DOI: 10.1007/s11182-010-9476-0

Google Scholar

[17] S.N. Chebotarev, A.S. Pashchenko, V.A. Irkha, M.L. Lunina, Morphology and Optical Investigations of InAs-QD/GaAs Heterostructures Obtained by Ion-Beam Sputtering, Journal of Nanotechnology. 2016 (2016) 5340218.

DOI: 10.1155/2016/5340218

Google Scholar

[18] S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, V.A. Irkha, Regularities of ion-beam-induced crystallization and properties of InAs-QD/GaAs(001) semiconductor nanoheterostructures, Nanotechnologies in Russia. 11 (2016) 435-443.

DOI: 10.1134/s1995078016040030

Google Scholar

[19] V.N. Lozovskii, S.N. Chebotarev, V.A. Irkha, G.V. Valov, Formation and use of positioning marks in scanning probe microscopy, Technical Physics Letters, 36 (2010) 737-738.

DOI: 10.1134/s1063785010080171

Google Scholar

[20] S.N. Chebotarev, A.S. Pashchenko, D.A. Arustamyan, Microcrystalline and amorphous photovoltaic silicon materials Performance optimization, Materials Science Forum, 870 (2016) 74-82.

DOI: 10.4028/www.scientific.net/msf.870.74

Google Scholar