[1]
D.L. Alfimova, L.S. Lunin, M.L. Lunina, D.A. Arustamyan, A.E. Kazakova, S.N. Chebotarev, Growth and properties of isoparametric InAlGaPAs/GaAs heterostructures, Semiconductors, 51 (2017) 1377-1384.
DOI: 10.1134/s1063782617100037
Google Scholar
[2]
D.L. Alfimova, L.S. Lunin, M.L. Lunina, A.E. Kazakova, A.S. Pashchenko, S.N. Chebotarev, Synthesis and properties of InxAlyGa1–x–yPzAs1–z/GaAs heterostructures, Inorganic Materials, 53 (2017) 1217-1227.
DOI: 10.1134/s0020168517120019
Google Scholar
[3]
D.A. Arustamyan, M.L. Lunina, L.S. Lunin, A.E. Kazakova, Quinary InAlGaPAs/GaAs solid solutions grown by temperature gradient zone melting, Journal of Physics: Conference Series, 917 (2017) 032016.
DOI: 10.1088/1742-6596/917/3/032016
Google Scholar
[4]
M.L. Lunina, A.E. Kazakova, D.A. Arustamyan, Study of properties of multicomponent heterostructures based on AIIIBVcompounds, Solid State Phenomena, 265 (2017) 728-733.
DOI: 10.4028/www.scientific.net/ssp.265.728
Google Scholar
[5]
A.N. Yatsenko, S.N. Chebotarev, V.N. Lozovskii, A.A.A. Mohamed, L.M. Goncharova, A.A. Varnavskaya, Germanium layers grown by zone thermal crystallization from a discrete liquid source, Journal of Physics: Conference Series, 917 (2017) 032008.
DOI: 10.1088/1742-6596/917/3/032008
Google Scholar
[6]
S.N. Chebotarev, A.N. Yatsenko, V.N. Lozovskii, A.A.A. Mohamed, G.A. Erimeev, Zone thermal recrystallization of thin layers from a discrete source, ARPN Journal of Engineering and Applied Sciences, 12 (2017) 1453-1457.
DOI: 10.1088/1742-6596/917/3/032008
Google Scholar
[7]
S.N. Chebotarev, A.N. Yatsenko, L.S. Lunin, Features of zone thermal recrystallization of germaniun layers grown on silicon substrates from a discrete source, Solid State Phenomena, 265 (2017) 620-626.
DOI: 10.4028/www.scientific.net/ssp.265.620
Google Scholar
[8]
M. Zavvari, V. Ahmadi, A. Mir, High performance avalanche quantum dot photodetector for mid-infrared detection, Optical and Quantum Electronics, 47 (2015) 1207–1217.
DOI: 10.1007/s11082-014-9977-0
Google Scholar
[9]
B. Tongbram, S. Shetty, H. Ghadi, S. Adhikary, S. Chakrabarti, Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors, Applied Physics A, 118 (2015).
DOI: 10.1007/s00339-014-8854-9
Google Scholar
[10]
R.V. Shenoi, J. Rosenberg, T.E. Vandervelde, Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities, IEEE Journal of quantum electronics, 46 (2010) 1051-1057.
DOI: 10.1109/jqe.2010.2042682
Google Scholar
[11]
N.S. Beattie, G. Zoppi, P. See, I. Farrer, M. Duchamp, D.J. Morrison, R.W. Miles, D.A. Ritchie. Analysis of InAs/GaAs quantum dot solar cells using Suns-Voc measurements, Solar Energy Materials & Solar Cells, 100 (2014) 241–245.
DOI: 10.1016/j.solmat.2014.07.022
Google Scholar
[12]
D.A. Ramirez, J. Shao, M.M. Hayat, S. Krishna, Midwave infrared quantum dot avalanche photodiode, Applied Physics Letters, 97 (2010) 212-215.
DOI: 10.1063/1.3520519
Google Scholar
[13]
S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, E.N. Zhivotova, G.A. Erimeev, M.L. Lunina, Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering, Beilstein Journal of Nanotechnology, 8 (2017) 12-20.
DOI: 10.3762/bjnano.8.2
Google Scholar
[14]
L.S. Lunin, I.A. Sysoev, D.L. Alfimova, S.N. Chebotarev, A.S. Pashchenko, Photoluminescence of i-GaxIn1-xAs/n-GaAs heterostructures containing a random InAs quantum dot array, Inorganic Materials. 47 (2011) 816-818.
DOI: 10.1134/s0020168511080103
Google Scholar
[15]
S. Chebotarev, A. Pashchenko, L. Lunin, V. Irkha, Mass transfer of semiconductors at low flow argon ion beam sputtering, International Journal of Applied Engineering Research, 11 (2016) 1622-1629.
Google Scholar
[16]
V.N. Brudnyi, S. N. Grinyaev, Optical absorption spectra of Si with Ge quantum dots, Russian Physics Journal, 53 (2010) 703–705.
DOI: 10.1007/s11182-010-9476-0
Google Scholar
[17]
S.N. Chebotarev, A.S. Pashchenko, V.A. Irkha, M.L. Lunina, Morphology and Optical Investigations of InAs-QD/GaAs Heterostructures Obtained by Ion-Beam Sputtering, Journal of Nanotechnology. 2016 (2016) 5340218.
DOI: 10.1155/2016/5340218
Google Scholar
[18]
S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, V.A. Irkha, Regularities of ion-beam-induced crystallization and properties of InAs-QD/GaAs(001) semiconductor nanoheterostructures, Nanotechnologies in Russia. 11 (2016) 435-443.
DOI: 10.1134/s1995078016040030
Google Scholar
[19]
V.N. Lozovskii, S.N. Chebotarev, V.A. Irkha, G.V. Valov, Formation and use of positioning marks in scanning probe microscopy, Technical Physics Letters, 36 (2010) 737-738.
DOI: 10.1134/s1063785010080171
Google Scholar
[20]
S.N. Chebotarev, A.S. Pashchenko, D.A. Arustamyan, Microcrystalline and amorphous photovoltaic silicon materials Performance optimization, Materials Science Forum, 870 (2016) 74-82.
DOI: 10.4028/www.scientific.net/msf.870.74
Google Scholar