Growing of AlInGaAsP Solid Solutions on InP Substrates for Photovoltaic Converters

Article Preview

Abstract:

The article contains a description of various growing conditions for isoparametric heterostructures based on InP. It is shown that the structural perfection of solid solutions grown on InP substrates is influenced by parameters, such as the temperature of the epitaxy process, the temperature gradient, and the composition and thickness of the liquid zone. By analyzing the quality of the surface and the structural perfection of isoparametric AlGaInAsP solid solutions, based on InP, optimal parameters of the zone recrystallization process in the temperature gradient field (TGZR), at which the epitaxial films had minimal roughness and high crystalline perfection, were found.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

188-193

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Lunina, A.E. Kazakova, D.A. Arustamyan, Study of properties of multicomponent heterostructures based on AIIIBVcompounds, Solid State Phenomena, 265 (2017) 728-733.

DOI: 10.4028/www.scientific.net/ssp.265.728

Google Scholar

[2] Y. He, Y. Sun,Y. Zhao, S. Yu, J. Dong, Characteristics of InP on GaAs substrate using Zn-doped Al(Ga)InAs metamorphic buffers, Journal of Materials Science: Materials in Electronics, 28 (2017) 9732-9737.

DOI: 10.1007/s10854-017-6724-x

Google Scholar

[3] S.N. Chebotarev, A.S. Pashchenko, V.A. Irkha, M.L. Lunina, Morphology and Optical Investigations of InAs-QD/GaAs Heterostructures Obtained by Ion-Beam Sputtering, Journal of Nanotechnology. 2016 (2016) 5340218.

DOI: 10.1155/2016/5340218

Google Scholar

[4] S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, E.N. Zhivotova, G.A. Erimeev, M.L. Lunina, Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering, Beilstein Journal of Nanotechnology, 8 (2017) 12-20.

DOI: 10.3762/bjnano.8.2

Google Scholar

[5] S. Chebotarev, A. Pashchenko, L. Lunin, V. Irkha, Mass transfer of semiconductors at low flow argon ion beam sputtering, International Journal of Applied Engineering Research, 11 (2016) 1622-1629.

Google Scholar

[6] D.A. Arustamyan, M.L. Lunina, L.S. Lunin, A.E. Kazakova, Quinary InAlGaPAs/GaAs solid solutions grown by temperature gradient zone melting, Journal of Physics: Conference Series, 917 (2017) 032016.

DOI: 10.1088/1742-6596/917/3/032016

Google Scholar

[7] S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, V.A. Irkha, Regularities of ion-beam-induced crystallization and properties of InAs-QD/GaAs(001) semiconductor nanoheterostructures, Nanotechnologies in Russia. 11 (2016) 435-443.

DOI: 10.1134/s1995078016040030

Google Scholar

[8] D.L. Alfimova, L.S. Lunin, M.L. Lunina, D.A. Arustamyan, A.E. Kazakova, S.N. Chebotarev, Growth and properties of isoparametric InAlGaPAs/GaAs heterostructures, Semiconductors, 51 (2017) 1377-1384.

DOI: 10.1134/s1063782617100037

Google Scholar

[9] D.L. Alfimova, L.S. Lunin, M.L. Lunina, A.E. Kazakova, A.S. Pashchenko, S.N. Chebotarev, Synthesis and properties of InxAlyGa1–x–yPzAs1–z/GaAs heterostructures, Inorganic Materials, 53 (2017) 1217-1227.

DOI: 10.1134/s0020168517120019

Google Scholar

[10] S.N. Chebotarev, A.N. Yatsenko, V.N. Lozovskii, A.A.A. Mohamed, G.A. Erimeev, Zone thermal recrystallization of thin layers from a discrete source, ARPN Journal of Engineering and Applied Sciences, 12 (2017) 1453-1457.

DOI: 10.1088/1742-6596/917/3/032008

Google Scholar

[11] A.N. Yatsenko, S.N. Chebotarev, V.N. Lozovskii, A.A.A. Mohamed, L.M. Goncharova, A.A. Varnavskaya, Germanium layers grown by zone thermal crystallization from a discrete liquid source, Journal of Physics: Conference Series, 917 (2017) 032008.

DOI: 10.1088/1742-6596/917/3/032008

Google Scholar

[12] S.N. Chebotarev, A.N. Yatsenko, L.S. Lunin, Features of zone thermal recrystallization of germaniun layers grown on silicon substrates from a discrete source, Solid State Phenomena, 265 (2017) 620-626.

DOI: 10.4028/www.scientific.net/ssp.265.620

Google Scholar

[13] V.N. Lozovskii, S.N. Chebotarev, V.A. Irkha, G.V. Valov, Formation and use of positioning marks in scanning probe microscopy, Technical Physics Letters, 36 (2010) 737-738.

DOI: 10.1134/s1063785010080171

Google Scholar

[14] Q. Sun, Y. Wei, J. Zhang, R. Sun, Effect of Lattice Mismatch on HgCdTe LPE Film Surface Morphology, Journal of Electronic Materials, 45 (2016) 4674-4679.

DOI: 10.1007/s11664-016-4637-8

Google Scholar

[15] L.S. Lunin, I.A. Sysoev, D.L. Alfimova, S.N. Chebotarev, A.S. Pashchenko, Photoluminescence of i-GaxIn1-xAs/n-GaAs heterostructures containing a random InAs quantum dot array, Inorganic Materials. 47 (2011) 816-818.

DOI: 10.1134/s0020168511080103

Google Scholar

[16] S.N. Chebotarev, A.S. Pashchenko, D.A. Arustamyan, Microcrystalline and amorphous photovoltaic silicon materials Performance optimization, Materials Science Forum, 870 (2016) 74-82.

DOI: 10.4028/www.scientific.net/msf.870.74

Google Scholar

[17] T. Chtouki, L. El Mezouary, A. Ammous, H. Mejbri, K. Ammous, H. Erguig, B. Elidrissi Analytical Modeling and Numerical Simulation for Optimization of Inorganic Material Thin Layer Using Genetic Algorithms, Journal of Inorganic and Organometallic Polymers and Materials, 27 (2017).

DOI: 10.1007/s10904-017-0628-3

Google Scholar

[18] A.M. Mozharov, A.D. Bolshakov, G.E. Cirlin, D.A. Kudryashov, A.S. Gudovskikh, I.S. Mukhin, Z.I. Alferov, Simulation of photovoltaic efficiency of a tandem solar cell on Si with GaN nanowires as an emitter layer, Journal of Physics: Conference Series, 690 (2016).

DOI: 10.1088/1742-6596/690/1/012041

Google Scholar

[19] A. Bahrami, S. Mohammadnejad, S. Soleimaninezhad, Photovoltaic cells technology: principles and recent developments, Optical and Quantum Electronics, 45 (2013) 161-197.

DOI: 10.1007/s11082-012-9613-9

Google Scholar

[20] M. Kutter, C. Rohde, A.M.. Sändig, Well-posedness of a two-scale model for liquid phase epitaxy with elasticity, Continuum Mechanics and Thermodynamics, 29 (2017) 989-1016.

DOI: 10.1007/s00161-015-0462-1

Google Scholar