Low-Energy Ion Technique for Semiconductor Surface Preparation

Article Preview

Abstract:

We proposed an experimental technique for determining the sputtering yields of two-component semiconductors – gallium arsenide and indium arsenide by low-energy argon ions. It was suggested to measure the volume of a crater formed by inert ions bombarding on the target surface using the method of scanning laser confocal microscopy. It was demonstrated that in the energy range from 100 to 300 eV, the energy dependence of sputtering yields for these materials is practically linear. It is established that the sputtering yields for normal bombardment by argon ions at optimum energy of 150 eV are equal to Y(GaAs) = 0.41 and Y(InAs) = 0.73. It is found that an increase in the etching time of the surface of gallium arsenide and indium arsenide leads to a characteristic transformation of the surface relief. The studies of the sputtering of two-component targets indicate the initial strong non-stechiometry. Etching for a certain period of time leads to an equalization of the concentrations of the sputtered components. It was found that to obtain a uniform composition of the mass flow it is necessary to pre-sputter the targets with shielded substrates.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

198-203

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Mintairov, N.A. Kalyuzhnyy, A.M. Nadtochiy, M.V. Maximov, S.S. Rouvimov, A.E. Zhukov, Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD, Semiconductors. 51 (2017) 357-362.

DOI: 10.1134/s1063782617030198

Google Scholar

[2] K.G. Belyaev, A.A. Usikova, V.N. Jmerik, P.S. Kop'ev, S.V. Ivanov, A.A. Toropov, P.N. Brunkov, Plasmon-induced enhancement of yellow-red luminescence in InGaN/Au nanocomposites, Semiconductors. 49 (2015) 247-253.

DOI: 10.1134/s1063782615020049

Google Scholar

[3] N.Y. Gordeev, O.I. Rumyantsev, I.G. Savenko, A.S. Payusov, F.I. Zubov, M.V. Maximov, A.E. Zhukov, Refractive index of laser active region based on InAs/InGaAs quantum dots. Journal of Nanophotonics. 7 (2013) 073087.

DOI: 10.1117/1.jnp.7.073087

Google Scholar

[4] A. Luque, P.G. Linares, A. Mellor, V. Andreev, A. Marti, Some advantages of intermediate band solar cells based on type II quantum dots, Applied Physics Letters. 103 (2013) 123901.

DOI: 10.1063/1.4821580

Google Scholar

[5] S. Li, Q. Chen, S. Sun, Y. Li, Q. Zhu, J. Li, X. Wang, J. Han, J. Zhang, C. Chen, Y. Fang, InAs/GaAs quantum dots with wide-range tunable densities by simply varying V/III ratio using metal-organic chemical vapor deposition, Nanoscale Research Letters. 8 (2013).

DOI: 10.1186/1556-276x-8-367

Google Scholar

[6] L.S. Lunin, I.A. Sysoev, D.L. Alfimova, S.N. Chebotarev, A.S. Pashchenko, Photoluminescence of i-GaxIn1-xAs/n-GaAs heterostructures containing a random InAs quantum dot array, Inorganic Materials. 47 (2011) 816-818.

DOI: 10.1134/s0020168511080103

Google Scholar

[7] S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, V.A. Irkha, Regularities of ion-beam-induced crystallization and properties of InAs-QD/GaAs(001) semiconductor nanoheterostructures, Nanotechnologies in Russia. 11 (2016) 435-443.

DOI: 10.1134/s1995078016040030

Google Scholar

[8] S.N. Chebotarev, A.S. Pashchenko, V.A. Irkha, M.L. Lunina, Morphology and Optical Investigations of InAs-QD/GaAs Heterostructures Obtained by Ion-Beam Sputtering, Journal of Nanotechnology. 2016 (2016) 5340218.

DOI: 10.1155/2016/5340218

Google Scholar

[9] S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, E.N. Zhivotova, G.A. Erimeev, M.L. Lunina, Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering, Beilstein Journal of Nanotechnology, 8 (2017) 12-20.

DOI: 10.3762/bjnano.8.2

Google Scholar

[10] A.N. Yatsenko, S.N. Chebotarev, V.N. Lozovskii, A.A.A. Mohamed, L.M. Goncharova, A.A. Varnavskaya, Germanium layers grown by zone thermal crystallization from a discrete liquid source, Journal of Physics: Conference Series, 917 (2017) 032008.

DOI: 10.1088/1742-6596/917/3/032008

Google Scholar

[11] S.N. Chebotarev, A.N. Yatsenko, V.N. Lozovskii, A.A.A. Mohamed, G.A. Erimeev, Zone thermal recrystallization of thin layers from a discrete source, ARPN Journal of Engineering and Applied Sciences, 12 (2017) 1453-1457.

DOI: 10.1088/1742-6596/917/3/032008

Google Scholar

[12] V.N. Lozovskii, S.N. Chebotarev, V.A. Irkha, G.V. Valov, Formation and use of positioning marks in scanning probe microscopy, Technical Physics Letters, 36 (2010) 737-738.

DOI: 10.1134/s1063785010080171

Google Scholar

[13] S.N. Chebotarev, A.N. Yatsenko, L.S. Lunin, Features of zone thermal recrystallization of germaniun layers grown on silicon substrates from a discrete source, Solid State Phenomena, 265 (2017) 620-626.

DOI: 10.4028/www.scientific.net/ssp.265.620

Google Scholar

[14] S. Chebotarev, A. Pashchenko, L. Lunin, V. Irkha, Mass transfer of semiconductors at low flow argon ion beam sputtering, International Journal of Applied Engineering Research, 11 (2016) 1622-1629.

Google Scholar

[15] S.N. Chebotarev, A.S. Pashchenko, D.A. Arustamyan, Microcrystalline and amorphous photovoltaic silicon materials Performance optimization, Materials Science Forum, 870 (2016) 74-82.

DOI: 10.4028/www.scientific.net/msf.870.74

Google Scholar

[16] D.L. Alfimova, L.S. Lunin, M.L. Lunina, D.A. Arustamyan, A.E. Kazakova, S.N. Chebotarev, Growth and properties of isoparametric InAlGaPAs/GaAs heterostructures, Semiconductors, 51 (2017), 1377-1384.

DOI: 10.1134/s1063782617100037

Google Scholar

[17] D.A. Arustamyan, M.L. Lunina, L.S. Lunin, A.E. Kazakova, Quinary InAlGaPAs/GaAs solid solutions grown by temperature gradient zone melting, Journal of Physics: Conference Series, 917 (2017) 032016.

DOI: 10.1088/1742-6596/917/3/032016

Google Scholar

[18] D.L. Alfimova, L.S. Lunin, M.L. Lunina, A.E. Kazakova, A.S. Pashchenko, S.N. Chebotarev, Synthesis and properties of InxAlyGa1–x–yPzAs1–z/GaAs heterostructures, Inorganic Materials, 53 (2017) 1217-1227.

DOI: 10.1134/s0020168517120019

Google Scholar