Statistical Analysis Method of the Grain Structure of Nanostructured Single Phase Metal Materials Processed by High-Pressure Torsion

Article Preview

Abstract:

The statistical analysis method of the grain structure in bulk single-phase metal materials subjected to high-pressure torsion is proposed. The possibility of methods division of mathematical statistics observed in the grain structure materials by their sizes with the several groups identification, having various behavior at further heating is presented. The example of the grain structure analysis on the nanostructured tin bronze is given. The agreement of the received analysis results with experimental data is offered.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

425-430

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.

Google Scholar

[2] R.Z. Valiev, I.V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei (Nanostructure Materials, Produced by Intensive Plastic Deformation), Moscow, Logos, (2000).

Google Scholar

[3] R.Z. Valiev, I.V. Aleksandrov, Ob''emnye nanostrukturnye metallicheskie materialy (3D Nanostructure Metal Materials), Moscow, ITTs Akademkniga, (2007).

Google Scholar

[4] A.I. Gusev, A.A. Rempel', Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow, Fizmatlit, (2000).

Google Scholar

[5] Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya et al. Zernogranichnaya diffuziya i svoistva nanostrukturnykh materialov (Grain Boundary Diffusion and Properties of Nanostructured Materials), Eds., Novosibirsk, Nauka, (2001).

Google Scholar

[6] R.Z. Valiev, R. Sh Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78.6 (1994) 666-670.

Google Scholar

[7] A.V. Stolbovskii, E.N. Popova, Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 388-392.

DOI: 10.3103/s1062873810030159

Google Scholar

[8] V.V. Popov, A.V. Stolbovsky, A.V. Sergeev, V.A. Semionkin, Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.

DOI: 10.3103/s106287381707022x

Google Scholar

[9] V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation, Phys. Met. Metallogr. 118 (2017) 354-361.

DOI: 10.1134/s0031918x17040081

Google Scholar

[10] V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.

DOI: 10.4028/www.scientific.net/ddf.364.147

Google Scholar

[11] A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.

DOI: 10.3103/s1062873814090299

Google Scholar

[12] V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin, N.K. Arkhipova Nanostructurization of Nb by High-Pressure Torsion in Liquid Nitrogen and the Thermal Stability of the Structure Obtained, Phys. Met. Metallogr. 113 (2012) 295-301.

DOI: 10.1134/s0031918x1203009x

Google Scholar

[13] V.V. Popov, E.N. Popova, A.V. Stolbovskiy, Nanostructuring Nb by various techniques of severe plastic deformation, Materials Science and Engineering A. 539 (2012) 22-29.

DOI: 10.1016/j.msea.2011.12.082

Google Scholar

[14] V.V. Popov, R.Z. Valiev, E.N. Popova, A.V. Sergeev, A.V. Stolbovsky, V.U. Kazihanov Structure and Properties of Grain Boundaries in Submicrocrystalline W Obtained By Severe Plastic Deformation, Defect and Diffusion Forum. 283-286 (2009) 629-638.

DOI: 10.4028/www.scientific.net/ddf.283-286.629

Google Scholar

[15] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, Mössbauer Emission Spectroscopy of Grain Boundaries on Poly- and Nanocrystalline Niobium, Bull. Russ. Acad. Sci. Phys. 71 (2007) 1244-1248.

DOI: 10.3103/s1062873807090110

Google Scholar

[16] A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418-423.

DOI: 10.1134/s0031918x08100128

Google Scholar

[17] T. Hebesberger, A. Vorhauer, H.P. Stuwe, R. Pippan, Proc. Conf. Nanomaterials by Severe Plastic Deformation-NANOSPD2,, Vienna, Austria. (2002) 447-452.

DOI: 10.1002/3527602461.ch8b

Google Scholar

[18] R. Pippan, S. Scheriau, A. Taylor, et al., Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343.

DOI: 10.1146/annurev-matsci-070909-104445

Google Scholar

[19] V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.

DOI: 10.4028/www.scientific.net/ddf.297-301.1312

Google Scholar

[20] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, Grain growth in dynamically recrystallized copper during annealing above and below the temperature of thermally activated nucleation, Diagnostics, Resource and Mechanics of materials and structures. (2016).

DOI: 10.17804/2410-9908.2016.5.015-029

Google Scholar

[21] M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, D.V. Shinyavskii, V.I. Levit, Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation, Phys. Met. Metallogr. 117 (2016).

DOI: 10.1134/s0031918x16110053

Google Scholar

[22] Yu.G. Krasnoperova, M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, Effect of Annealing Temperature on the Recrystallization of Nickel with Different Ultradisperse Structures, Phys. Met. Metallogr. 117 (2016) 267-274.

DOI: 10.1134/s0031918x16030078

Google Scholar

[23] L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure Evolution and Stability of Copper Deformed at 80 K, Russian Metallurgy (Metally). (2012) 303-306.

DOI: 10.1134/s0036029512040131

Google Scholar

[24] T.I. Chashchukhina, L.M. Voronova, M.V. Degtyarev, D.K. Pokryshkina, Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils, Phys. Met. Metallogr. 111 (2011) 304-313.

DOI: 10.1134/s0031918x11020049

Google Scholar

[25] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov, V.P. Pilyugin, Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion, Acta Materialia. 55 (2007) 6039-6050.

DOI: 10.1016/j.actamat.2007.04.017

Google Scholar

[26] M.V. Degtyarev, L.M. Voronova, T.M. Chashchukhina, Development of recrystallization in various ultrafine structures produced in iron by severe plastic deformation, Bull. Russ. Acad. Sci. Phys. 71 (2007) 242-244.

DOI: 10.3103/s1062873807020232

Google Scholar

[27] A.V. Stolbovsky, V.V. Popov, E.N. Popova, Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion, Diagnostics, Resource and Mechanics of materials and structures. 5 (2015) 118-132.

DOI: 10.17804/2410-9908.2015.5.118-132

Google Scholar

[28] V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovsky, E.V. Shorohov, G. Reglitz, S.V. Divinski, G. Wilde, Nanostructuring of Ni by Various Modes of Severe Plastic Deformation, Defect and Diffusion Forum. 354 (2014) 109-119.

DOI: 10.4028/www.scientific.net/ddf.354.109

Google Scholar

[29] V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal Stability of Nickel Structure Obtained by High Pressure Torsion in Liquid Nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691.

DOI: 10.1134/s0031918x14070060

Google Scholar