[1]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.
Google Scholar
[2]
R.Z. Valiev, I.V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei (Nanostructure Materials, Produced by Intensive Plastic Deformation), Moscow, Logos, (2000).
Google Scholar
[3]
R.Z. Valiev, I.V. Aleksandrov, Ob''emnye nanostrukturnye metallicheskie materialy (3D Nanostructure Metal Materials), Moscow, ITTs Akademkniga, (2007).
Google Scholar
[4]
A.I. Gusev, A.A. Rempel', Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow, Fizmatlit, (2000).
Google Scholar
[5]
Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya et al. Zernogranichnaya diffuziya i svoistva nanostrukturnykh materialov (Grain Boundary Diffusion and Properties of Nanostructured Materials), Eds., Novosibirsk, Nauka, (2001).
Google Scholar
[6]
R.Z. Valiev, R. Sh Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78.6 (1994) 666-670.
Google Scholar
[7]
A.V. Stolbovskii, E.N. Popova, Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 388-392.
DOI: 10.3103/s1062873810030159
Google Scholar
[8]
V.V. Popov, A.V. Stolbovsky, A.V. Sergeev, V.A. Semionkin, Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.
DOI: 10.3103/s106287381707022x
Google Scholar
[9]
V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation, Phys. Met. Metallogr. 118 (2017) 354-361.
DOI: 10.1134/s0031918x17040081
Google Scholar
[10]
V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.
DOI: 10.4028/www.scientific.net/ddf.364.147
Google Scholar
[11]
A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.
DOI: 10.3103/s1062873814090299
Google Scholar
[12]
V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin, N.K. Arkhipova Nanostructurization of Nb by High-Pressure Torsion in Liquid Nitrogen and the Thermal Stability of the Structure Obtained, Phys. Met. Metallogr. 113 (2012) 295-301.
DOI: 10.1134/s0031918x1203009x
Google Scholar
[13]
V.V. Popov, E.N. Popova, A.V. Stolbovskiy, Nanostructuring Nb by various techniques of severe plastic deformation, Materials Science and Engineering A. 539 (2012) 22-29.
DOI: 10.1016/j.msea.2011.12.082
Google Scholar
[14]
V.V. Popov, R.Z. Valiev, E.N. Popova, A.V. Sergeev, A.V. Stolbovsky, V.U. Kazihanov Structure and Properties of Grain Boundaries in Submicrocrystalline W Obtained By Severe Plastic Deformation, Defect and Diffusion Forum. 283-286 (2009) 629-638.
DOI: 10.4028/www.scientific.net/ddf.283-286.629
Google Scholar
[15]
V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, Mössbauer Emission Spectroscopy of Grain Boundaries on Poly- and Nanocrystalline Niobium, Bull. Russ. Acad. Sci. Phys. 71 (2007) 1244-1248.
DOI: 10.3103/s1062873807090110
Google Scholar
[16]
A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418-423.
DOI: 10.1134/s0031918x08100128
Google Scholar
[17]
T. Hebesberger, A. Vorhauer, H.P. Stuwe, R. Pippan, Proc. Conf. Nanomaterials by Severe Plastic Deformation-NANOSPD2,, Vienna, Austria. (2002) 447-452.
DOI: 10.1002/3527602461.ch8b
Google Scholar
[18]
R. Pippan, S. Scheriau, A. Taylor, et al., Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343.
DOI: 10.1146/annurev-matsci-070909-104445
Google Scholar
[19]
V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.
DOI: 10.4028/www.scientific.net/ddf.297-301.1312
Google Scholar
[20]
M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, Grain growth in dynamically recrystallized copper during annealing above and below the temperature of thermally activated nucleation, Diagnostics, Resource and Mechanics of materials and structures. (2016).
DOI: 10.17804/2410-9908.2016.5.015-029
Google Scholar
[21]
M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, D.V. Shinyavskii, V.I. Levit, Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation, Phys. Met. Metallogr. 117 (2016).
DOI: 10.1134/s0031918x16110053
Google Scholar
[22]
Yu.G. Krasnoperova, M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, Effect of Annealing Temperature on the Recrystallization of Nickel with Different Ultradisperse Structures, Phys. Met. Metallogr. 117 (2016) 267-274.
DOI: 10.1134/s0031918x16030078
Google Scholar
[23]
L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure Evolution and Stability of Copper Deformed at 80 K, Russian Metallurgy (Metally). (2012) 303-306.
DOI: 10.1134/s0036029512040131
Google Scholar
[24]
T.I. Chashchukhina, L.M. Voronova, M.V. Degtyarev, D.K. Pokryshkina, Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils, Phys. Met. Metallogr. 111 (2011) 304-313.
DOI: 10.1134/s0031918x11020049
Google Scholar
[25]
M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov, V.P. Pilyugin, Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion, Acta Materialia. 55 (2007) 6039-6050.
DOI: 10.1016/j.actamat.2007.04.017
Google Scholar
[26]
M.V. Degtyarev, L.M. Voronova, T.M. Chashchukhina, Development of recrystallization in various ultrafine structures produced in iron by severe plastic deformation, Bull. Russ. Acad. Sci. Phys. 71 (2007) 242-244.
DOI: 10.3103/s1062873807020232
Google Scholar
[27]
A.V. Stolbovsky, V.V. Popov, E.N. Popova, Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion, Diagnostics, Resource and Mechanics of materials and structures. 5 (2015) 118-132.
DOI: 10.17804/2410-9908.2015.5.118-132
Google Scholar
[28]
V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovsky, E.V. Shorohov, G. Reglitz, S.V. Divinski, G. Wilde, Nanostructuring of Ni by Various Modes of Severe Plastic Deformation, Defect and Diffusion Forum. 354 (2014) 109-119.
DOI: 10.4028/www.scientific.net/ddf.354.109
Google Scholar
[29]
V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal Stability of Nickel Structure Obtained by High Pressure Torsion in Liquid Nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691.
DOI: 10.1134/s0031918x14070060
Google Scholar