[1]
Ju.V. Konovalov, Spravochnik prokatchika, Reference book for rolling worker (in Russian), Teplotekhnik, Moscow, (2008).
Google Scholar
[2]
E.A. Harber, Proizvodstvo prokata, Production of rolled products (in Russian), Teplotekhnik, Moscow, (2007).
Google Scholar
[3]
M.Y. Huh, H.G. Kang and C.K. Kang, Effect of Roll Gap Geometry on the Evolution of Strain States and Textures during Asymmetrical Rolling in AA 1050, Solid State Phenomena. 116-117 (2006) 417-420.
DOI: 10.4028/www.scientific.net/ssp.116-117.417
Google Scholar
[4]
O. Engler, M.-Y. Huh and C.N. Tome. Metallurgical and Materials Transactions A. 31A(9) (2000) 2299-2315.
Google Scholar
[5]
Information on https://www.leonghuat.com/articles/hot&cold.htm.
Google Scholar
[6]
J. Wen, Q. Zhang, X. Zhang and X. Ye, Influence of roll profile configuration on high-strength strip flatness control performance in tandem rolling, Advanced Material Research. 145 (2011) 210-215.
DOI: 10.4028/www.scientific.net/amr.145.210
Google Scholar
[7]
Yu Bing-qiang, Sun Ya-bo, Liu Hong-min, You Lei, Peng Yan, Compensation Model for Shape Measuring of Cold Strip Rollin, Journal of Iron and Steel Research. International. 17(6) (2010) 21-26.
DOI: 10.1016/s1006-706x(10)60108-2
Google Scholar
[8]
A.M. Kawałek, H.S. Dyja, M.J. Knapiński, M.A. Kwapisz, K.B. Laber, Influence of Rolling Reduction, Strip Shape and Asymmetry Factor on the Strip Curvature, Solid State Phenomena. 199 (2013) 436-441.
DOI: 10.4028/www.scientific.net/ssp.199.436
Google Scholar
[9]
Hao Liang, DI Hong-shuang, Gong Dian-yao, Analysis of Sheet Curvature in Asymmetrical Cold Rolling, Journal of Iron and Steel Research, International. 20(5) (2013) 34-37.
DOI: 10.1016/s1006-706x(13)60094-1
Google Scholar
[10]
A. Aboutorabi, A. Assempour, H. Afrasiab, Analytical approach for calculating the sheet output curvature in asymmetrical rolling: In the case of roll axis displacement as a new asymmetry factor, International Journal of Mechanical Sciences. 105 (2016).
DOI: 10.1016/j.ijmecsci.2015.10.016
Google Scholar
[11]
R. Nakhoul, P. Montmitonnet, M. Potier-Ferry, Multi-scale method for modeling thin sheet buckling under residual stresses in the context of strip rolling, International Journal of Solids and Structures. 66 (2015) 62-76.
DOI: 10.1016/j.ijsolstr.2015.03.028
Google Scholar
[12]
M. Potier-Ferry, F. Mohri, N. Damil, B. Braikat, K. Mhada. Cellular instabilities analyzed by multi-scale Fourier series: A review, Discrete and Continuous Dynamical Systems Series S. 9 (2) (2016) 585-597.
DOI: 10.3934/dcdss.2016013
Google Scholar
[13]
A.V. Grushko, V.V. Kukhar and Yu.O. Slobodyanyuk, Phenomenological model of low-carbon steels hardening during multistage drawing, Solid State Phenomena. 265 (2017) 114–123.
DOI: 10.4028/www.scientific.net/ssp.265.114
Google Scholar
[14]
G.A. Orlov, Designing schedules for the cold rolling of tubes without intermediate annealings, Metallurgist. 61 (1-2) (2017) 53-57.
DOI: 10.1007/s11015-017-0453-5
Google Scholar
[15]
Z. Y. Jiang, H.T. Zhu, A.K. Tieu, Analysis of Asymmetrical Rolling for Cold Rolling due to Roll Edge Contact, Key Engineering Materials. 274–276 (2004) 715-720.
DOI: 10.4028/www.scientific.net/kem.274-276.715
Google Scholar
[16]
G. Pin, V. Francesconi, F.A. Cuzzola, T. Parisini, Adaptive task-space metal strip-flatness control in cold multi-roll mill stands, Journal of Process Control. 23 (2013) 108-119.
DOI: 10.1016/j.jprocont.2012.08.008
Google Scholar
[17]
S. Abdelkhalek, P. Montmitonnet, N. Legrand, P. Buessler, Coupled approach for flatness prediction in cold rolling of thin strip, International Journal of Mechanical Sciences. 53 (2011) 661-675.
DOI: 10.1016/j.ijmecsci.2011.04.001
Google Scholar
[18]
V.V. Kukhar, Producing of elongated forgings with sharpened end by rupture with local heating of the workpiece method, Metallurgical and Mining Industry. 6 (2015) 122-132.
Google Scholar
[19]
V. Kukhar, V. Artiukh, O. Serduik and E. Balalayeva, Form of gradient curve of temperature distribution of lengthwise the billet at differentiated heating before profiling by buckling, Procedia Engineering. 165 (2016) 1693-1704.
DOI: 10.1016/j.proeng.2016.11.911
Google Scholar
[20]
V. Kukhar, A. Prysiazhnyi, E. Balalayeva and O. Anishchenko, Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect, in: Modern Electrical and Energy System MEES'2017, IEEE, Kremenchuk. (2017).
DOI: 10.1109/mees.2017.8248945
Google Scholar
[21]
V. Kukhar, V. Burko, A. Prysiazhnyi, E. Balalayeva and M. Nahnibeda, Development of alternative technology of dual forming of profiled workpiece obtained by buckling, East-European Journal of Enterprise Technology. 3/7(81) (2016) 53-61.
DOI: 10.15587/1729-4061.2016.72063
Google Scholar
[22]
N. Mathieu, M. Potier-Ferry, H. Zahrouni, Reduction of flatness defects in thin metal sheets by a pure tension leveler, International Journal of Mechanical Sciences. 122 (2017) 267-276.
DOI: 10.1016/j.ijmecsci.2017.01.036
Google Scholar
[23]
V. Artiukh, V. Mazur and E. Pokrovskaya, Influence of strip bite time in work roll gap on dynamic loads in strip rolling stands, MATEC Web of Conference. 86 (2016) 01030.
DOI: 10.1051/matecconf/20168601030
Google Scholar
[24]
Peng Liu, Hongbo Li, Zhiqian Shen, Technical Characteristics and Application for a New Type of 8-Roll Cold Rolling Mill, Advanced Materials Research. 572 (2012) 55-60.
DOI: 10.4028/www.scientific.net/amr.572.55
Google Scholar
[25]
Y. Zhang, Q. Yang, Xiao-chen Wang, Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill, Journal of Iron and Steel Research. International. 18(9) (2011) 27-32.
DOI: 10.1016/s1006-706x(12)60030-2
Google Scholar
[26]
A. Bemporad, D. Bernardini, F.A. Cuzzola, A. Spinelli, Optimization-based automatic flatness control in cold tandem rolling, Journal of Process Control. 20 (2010) 396-407.
DOI: 10.1016/j.jprocont.2010.02.003
Google Scholar
[27]
Dinh Cuong Tran, N. Tardif, Ali Limam, Experimental and numerical modeling of flatness defects in strip cold rolling, International Journal of Solids and Structures. 69-70 (2015) 343-349.
DOI: 10.1016/j.ijsolstr.2015.05.017
Google Scholar
[28]
Lei Song, Junsheng Wang, Mingang Shen, Xubo Chen, Shengli Li, Work Roll Thermal Deformation Calculation Model of Cold Rolling Mill. Advanced Materials Research. 145 (2011) 61-67.
DOI: 10.4028/www.scientific.net/amr.145.61
Google Scholar
[29]
Dinh Cuong Tran, Nicolas Tardif, Hamza El Khaloui, Ali Limam, Thermal buckling of thin sheet related to cold rolling: Latent flatness defects modeling, Thin-Walled Structures. 113 (2017) 129-135.
DOI: 10.1016/j.tws.2016.12.010
Google Scholar
[30]
A.S. Galakhar, W. J.T. Daniel, P.A. Meehan, Prediction of Roll Profile Wear in the Cold Roll Forming Process, Key Engineering Materials. 410-411 (2009) 643-660.
DOI: 10.4028/www.scientific.net/kem.410-411.643
Google Scholar
[31]
V.I. Kaplanov, A.V. Shemyakin, A.G. Prisyazhnyi, E.V. Kaplanova and N.V. Leporskaya, Comparison of lubricants in cold thin-sheet rolling, Steel in Translation. 41(11) (2011) 951-953.
DOI: 10.3103/s096709121111009x
Google Scholar
[32]
V.I. Kaplanov and A.G. Prisyazhnyi, Simulation of contact friction in the hot rolling of steel sheet, Steel in Translation. 38(9) (2008) 714-718.
DOI: 10.3103/s0967091208090040
Google Scholar
[33]
P. Szota, S. Mróz, A. Stefanik, H. Dyja, The Influence of the Interstand Tension of the Band on Roll Wear during the Continuous Groove-Rolling Process. Solid State Phenomena. 220-221 (2015) 898-904.
DOI: 10.4028/www.scientific.net/ssp.220-221.898
Google Scholar
[34]
Jie Wen, Qingdong Zhang, Xiaofeng Zhang, Xuewei Ye, Influence of Roll Profile Configuration on High-Strength Strip Flatness Control Performance in Tandem Cold Rolling, Advanced Materials Research. 145 (2011) 210-215.
DOI: 10.4028/www.scientific.net/amr.145.210
Google Scholar
[35]
Xi Zhou, Huihua Xu, Jiyi Cheng, Ni Zhao, Shih-Chi Chen, Flexure-based Roll-to-roll Platform: A Practical Solution for Realizing Large-area Microcontact Printing, Scientific reports. 5, 10402 (2015).
DOI: 10.1038/srep10402
Google Scholar
[36]
V. Kukhar, E. Balalayeva and O. Nesterov, Calculation method and simulation of work of the ring elastic compensator for sheet-forming, MATEC Web of Conferences. 129 (2017) 01041.
DOI: 10.1051/matecconf/201712901041
Google Scholar
[37]
E. Balalayeva, V. Artiukh, V. Kukhar, O. Tuzenko, V. Glazko, A. Prysiazhnyi and V. Kankhva, Researching of the Stress-Strain State of the Open-Type Press Frame Using of Elastic Compensator of Errors of Press-Die, System, International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017, Advances in Intelligent Systems and Computing. 692 (2018).
DOI: 10.1007/978-3-319-70987-1_24
Google Scholar
[38]
S. Mróz, New Roll Pass Design to the Bar Rolling Process Using Longitudinal Slitting Passes, Solid State Phenomena. 165 (2010) 310-315.
DOI: 10.4028/www.scientific.net/ssp.165.310
Google Scholar
[39]
V.R. Gasyarov, A.A. Radionov, B.M. Loginov, S.S. Voronin and V.R. Khramshin, Improvement of work roll bending control system installed at plate mill stand, ACM International Conference Proceeding Series, Part F127852. (2017) 269-273.
DOI: 10.1145/3057039.3057105
Google Scholar
[40]
I.Yu. Andryushin, A.G. Shubin, A.N. Gostev, A.A. Radionov, A.S. Karandaev, V.R. Gasiyarov and V.R. Khramshin, Automatic tension control in the continuous roughing train of a wide-strip hot-rolling mill, Metallurgist. 61(5-6) (2017) 366-374.
DOI: 10.1007/s11015-017-0502-0
Google Scholar
[41]
Information on http://www.ptiextruders.com/news/article/featured/2014/01/31/100023/meeting -the-challenges-of-thin-gauge-sheet-extrusion.
Google Scholar
[42]
I. Lutsenko, Definition of efficiency indicator and study of its main function as an optimization criterion, Eastern-European Journal of Enterprise Technologies.
DOI: 10.15587/1729-4061.2016.85453
Google Scholar
[43]
A.A. Radionov, V.R. Gasiyarov, A.G. Shubin and R.R. Khramshin, Methods of calculation of load modes of roughing stand electric drives of wide-strip hot rolling mill, 13th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering, APEIE 2016 – Proceedings. 3 (2017).
DOI: 10.1109/apeie.2016.7806995
Google Scholar
[44]
A.I. Tselikov, H.S. Nikitin and S.Ye. Rokotian, Teoriia prodolnoi prokatki, Theory of longitudinal rolling (in Russian), Moscow, Metallurhiia, (1980).
Google Scholar
[45]
A.I. Tselikov, P.I. Polukhin, V.M. Hrebenik, F.K. Ivanchenko, M.A. Tylkin and A.A. Korolev, Mashiny i ahrehaty metallurhicheskikh zavodov, Machines and units of metallurgical factories (in Russian), Moscow, Metallurhiia, (1988).
Google Scholar
[46]
V.P. Polukhin, Matematicheskoie modelirovaniie i raschet na EVM listovykh prokatnykh stanov, Mathematical simulation and calculation of sheet rolling mills on a computer (in Russian), Moscow, Metallurhiia, (1972).
Google Scholar
[47]
A.H. Prysiazhnyi, Raschetnoie opredeleniie mezhvalkovoi pohonnoi nahruzki v kletiakh kvarto" stanov kholodnoi prokatki s uchetom vliianiia profilirovki i protivoizhiba rabochikh valkov, Calculation definition of load between rolls in the quarto-stands of cold rolling mills with due regard to the influence of trimming and counter-flexure of working rolls (in Russian), Vestnik NTU "KhPI" – Reporter of NTU "KhPI,. 47(953) (2012).
Google Scholar
[48]
A.V. Satonin, S.S. Nastoiashchaia and A.H. Prysiazhnyi, Razvitiie inzhenernykh metodov rascheta napriazhenno-deformirovannoho sostoianiia valkovoho uzla chetyrekhvalkovykh rabochikh kletei shirokopolosnykh stanov, The development of engineering methods of calculating the stress-strain state of four-high roll assembly work stands wide strip (in Russian), Obrabotka materialov davleniiem – Materials working by pressure. 4(33) (2012).
Google Scholar
[49]
A.V. Satonin, A.H. Prysiazhnyi, A.M. Spaskaia and A.S. Churukanov, Razvitiie chislennykh odnomernykh matematicheskikh modelei napriazhenno-deformirovannoho sostoianiia metalla pri kholodnoi prokatke otnositelno tonkikh polos, Development of numerical of one-dimensional mathematical models of the intense-deformed condition of metal at cold rolling concerning thin strips (in Russian), Obrabotka materialov davleniiem – Materials working by pressure. 2(31) (2012).
Google Scholar