Method for Determining the Optimum Counter-Flexing Force of Working Rolls during Sheet Rolling

Article Preview

Abstract:

The method of determination of the force of counter flexure of the working rolls was designed, ensuring improvement of the degree of flatness of cold rolled strips with due regard to the influence of unevenness of distribution of inter-rolls linear load. On the basis of the analysis of numerical realization of this method an essential influence of the width of the rolled strips upon the optimal value of the force of counter flexure was found out. Also, it was suggested to approximate the connection between increments of the force of counter flexure with linear equations, the application of which is promote to improvement efficiency of systems of automatic adjustment of shape and profile at rolling of sheets. For the condition of 4-stand cold rolling mill the values of transmission coefficients depending on widths of rolled strips were determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

416-424

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ju.V. Konovalov, Spravochnik prokatchika, Reference book for rolling worker (in Russian), Teplotekhnik, Moscow, (2008).

Google Scholar

[2] E.A. Harber, Proizvodstvo prokata, Production of rolled products (in Russian), Teplotekhnik, Moscow, (2007).

Google Scholar

[3] M.Y. Huh, H.G. Kang and C.K. Kang, Effect of Roll Gap Geometry on the Evolution of Strain States and Textures during Asymmetrical Rolling in AA 1050, Solid State Phenomena. 116-117 (2006) 417-420.

DOI: 10.4028/www.scientific.net/ssp.116-117.417

Google Scholar

[4] O. Engler, M.-Y. Huh and C.N. Tome. Metallurgical and Materials Transactions A. 31A(9) (2000) 2299-2315.

Google Scholar

[5] Information on https://www.leonghuat.com/articles/hot&cold.htm.

Google Scholar

[6] J. Wen, Q. Zhang, X. Zhang and X. Ye, Influence of roll profile configuration on high-strength strip flatness control performance in tandem rolling, Advanced Material Research. 145 (2011) 210-215.

DOI: 10.4028/www.scientific.net/amr.145.210

Google Scholar

[7] Yu Bing-qiang, Sun Ya-bo, Liu Hong-min, You Lei, Peng Yan, Compensation Model for Shape Measuring of Cold Strip Rollin, Journal of Iron and Steel Research. International. 17(6) (2010) 21-26.

DOI: 10.1016/s1006-706x(10)60108-2

Google Scholar

[8] A.M. Kawałek, H.S. Dyja, M.J. Knapiński, M.A. Kwapisz, K.B. Laber, Influence of Rolling Reduction, Strip Shape and Asymmetry Factor on the Strip Curvature, Solid State Phenomena. 199 (2013) 436-441.

DOI: 10.4028/www.scientific.net/ssp.199.436

Google Scholar

[9] Hao Liang, DI Hong-shuang, Gong Dian-yao, Analysis of Sheet Curvature in Asymmetrical Cold Rolling, Journal of Iron and Steel Research, International. 20(5) (2013) 34-37.

DOI: 10.1016/s1006-706x(13)60094-1

Google Scholar

[10] A. Aboutorabi, A. Assempour, H. Afrasiab, Analytical approach for calculating the sheet output curvature in asymmetrical rolling: In the case of roll axis displacement as a new asymmetry factor, International Journal of Mechanical Sciences. 105 (2016).

DOI: 10.1016/j.ijmecsci.2015.10.016

Google Scholar

[11] R. Nakhoul, P. Montmitonnet, M. Potier-Ferry, Multi-scale method for modeling thin sheet buckling under residual stresses in the context of strip rolling, International Journal of Solids and Structures. 66 (2015) 62-76.

DOI: 10.1016/j.ijsolstr.2015.03.028

Google Scholar

[12] M. Potier-Ferry, F. Mohri, N. Damil, B. Braikat, K. Mhada. Cellular instabilities analyzed by multi-scale Fourier series: A review, Discrete and Continuous Dynamical Systems Series S. 9 (2) (2016) 585-597.

DOI: 10.3934/dcdss.2016013

Google Scholar

[13] A.V. Grushko, V.V. Kukhar and Yu.O. Slobodyanyuk, Phenomenological model of low-carbon steels hardening during multistage drawing, Solid State Phenomena. 265 (2017) 114–123.

DOI: 10.4028/www.scientific.net/ssp.265.114

Google Scholar

[14] G.A. Orlov, Designing schedules for the cold rolling of tubes without intermediate annealings, Metallurgist. 61 (1-2) (2017) 53-57.

DOI: 10.1007/s11015-017-0453-5

Google Scholar

[15] Z. Y. Jiang, H.T. Zhu, A.K. Tieu, Analysis of Asymmetrical Rolling for Cold Rolling due to Roll Edge Contact, Key Engineering Materials. 274–276 (2004) 715-720.

DOI: 10.4028/www.scientific.net/kem.274-276.715

Google Scholar

[16] G. Pin, V. Francesconi, F.A. Cuzzola, T. Parisini, Adaptive task-space metal strip-flatness control in cold multi-roll mill stands, Journal of Process Control. 23 (2013) 108-119.

DOI: 10.1016/j.jprocont.2012.08.008

Google Scholar

[17] S. Abdelkhalek, P. Montmitonnet, N. Legrand, P. Buessler, Coupled approach for flatness prediction in cold rolling of thin strip, International Journal of Mechanical Sciences. 53 (2011) 661-675.

DOI: 10.1016/j.ijmecsci.2011.04.001

Google Scholar

[18] V.V. Kukhar, Producing of elongated forgings with sharpened end by rupture with local heating of the workpiece method, Metallurgical and Mining Industry. 6 (2015) 122-132.

Google Scholar

[19] V. Kukhar, V. Artiukh, O. Serduik and E. Balalayeva, Form of gradient curve of temperature distribution of lengthwise the billet at differentiated heating before profiling by buckling, Procedia Engineering. 165 (2016) 1693-1704.

DOI: 10.1016/j.proeng.2016.11.911

Google Scholar

[20] V. Kukhar, A. Prysiazhnyi, E. Balalayeva and O. Anishchenko, Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect, in: Modern Electrical and Energy System MEES'2017, IEEE, Kremenchuk. (2017).

DOI: 10.1109/mees.2017.8248945

Google Scholar

[21] V. Kukhar, V. Burko, A. Prysiazhnyi, E. Balalayeva and M. Nahnibeda, Development of alternative technology of dual forming of profiled workpiece obtained by buckling, East-European Journal of Enterprise Technology. 3/7(81) (2016) 53-61.

DOI: 10.15587/1729-4061.2016.72063

Google Scholar

[22] N. Mathieu, M. Potier-Ferry, H. Zahrouni, Reduction of flatness defects in thin metal sheets by a pure tension leveler, International Journal of Mechanical Sciences. 122 (2017) 267-276.

DOI: 10.1016/j.ijmecsci.2017.01.036

Google Scholar

[23] V. Artiukh, V. Mazur and E. Pokrovskaya, Influence of strip bite time in work roll gap on dynamic loads in strip rolling stands, MATEC Web of Conference. 86 (2016) 01030.

DOI: 10.1051/matecconf/20168601030

Google Scholar

[24] Peng Liu, Hongbo Li, Zhiqian Shen, Technical Characteristics and Application for a New Type of 8-Roll Cold Rolling Mill, Advanced Materials Research. 572 (2012) 55-60.

DOI: 10.4028/www.scientific.net/amr.572.55

Google Scholar

[25] Y. Zhang, Q. Yang, Xiao-chen Wang, Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill, Journal of Iron and Steel Research. International. 18(9) (2011) 27-32.

DOI: 10.1016/s1006-706x(12)60030-2

Google Scholar

[26] A. Bemporad, D. Bernardini, F.A. Cuzzola, A. Spinelli, Optimization-based automatic flatness control in cold tandem rolling, Journal of Process Control. 20 (2010) 396-407.

DOI: 10.1016/j.jprocont.2010.02.003

Google Scholar

[27] Dinh Cuong Tran, N. Tardif, Ali Limam, Experimental and numerical modeling of flatness defects in strip cold rolling, International Journal of Solids and Structures. 69-70 (2015) 343-349.

DOI: 10.1016/j.ijsolstr.2015.05.017

Google Scholar

[28] Lei Song, Junsheng Wang, Mingang Shen, Xubo Chen, Shengli Li, Work Roll Thermal Deformation Calculation Model of Cold Rolling Mill. Advanced Materials Research. 145 (2011) 61-67.

DOI: 10.4028/www.scientific.net/amr.145.61

Google Scholar

[29] Dinh Cuong Tran, Nicolas Tardif, Hamza El Khaloui, Ali Limam, Thermal buckling of thin sheet related to cold rolling: Latent flatness defects modeling, Thin-Walled Structures. 113 (2017) 129-135.

DOI: 10.1016/j.tws.2016.12.010

Google Scholar

[30] A.S. Galakhar, W. J.T. Daniel, P.A. Meehan, Prediction of Roll Profile Wear in the Cold Roll Forming Process, Key Engineering Materials. 410-411 (2009) 643-660.

DOI: 10.4028/www.scientific.net/kem.410-411.643

Google Scholar

[31] V.I. Kaplanov, A.V. Shemyakin, A.G. Prisyazhnyi, E.V. Kaplanova and N.V. Leporskaya, Comparison of lubricants in cold thin-sheet rolling, Steel in Translation. 41(11) (2011) 951-953.

DOI: 10.3103/s096709121111009x

Google Scholar

[32] V.I. Kaplanov and A.G. Prisyazhnyi, Simulation of contact friction in the hot rolling of steel sheet, Steel in Translation. 38(9) (2008) 714-718.

DOI: 10.3103/s0967091208090040

Google Scholar

[33] P. Szota, S. Mróz, A. Stefanik, H. Dyja, The Influence of the Interstand Tension of the Band on Roll Wear during the Continuous Groove-Rolling Process. Solid State Phenomena. 220-221 (2015) 898-904.

DOI: 10.4028/www.scientific.net/ssp.220-221.898

Google Scholar

[34] Jie Wen, Qingdong Zhang, Xiaofeng Zhang, Xuewei Ye, Influence of Roll Profile Configuration on High-Strength Strip Flatness Control Performance in Tandem Cold Rolling, Advanced Materials Research. 145 (2011) 210-215.

DOI: 10.4028/www.scientific.net/amr.145.210

Google Scholar

[35] Xi Zhou, Huihua Xu, Jiyi Cheng, Ni Zhao, Shih-Chi Chen, Flexure-based Roll-to-roll Platform: A Practical Solution for Realizing Large-area Microcontact Printing, Scientific reports. 5, 10402 (2015).

DOI: 10.1038/srep10402

Google Scholar

[36] V. Kukhar, E. Balalayeva and O. Nesterov, Calculation method and simulation of work of the ring elastic compensator for sheet-forming, MATEC Web of Conferences. 129 (2017) 01041.

DOI: 10.1051/matecconf/201712901041

Google Scholar

[37] E. Balalayeva, V. Artiukh, V. Kukhar, O. Tuzenko, V. Glazko, A. Prysiazhnyi and V. Kankhva, Researching of the Stress-Strain State of the Open-Type Press Frame Using of Elastic Compensator of Errors of Press-Die, System, International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017, Advances in Intelligent Systems and Computing. 692 (2018).

DOI: 10.1007/978-3-319-70987-1_24

Google Scholar

[38] S. Mróz, New Roll Pass Design to the Bar Rolling Process Using Longitudinal Slitting Passes, Solid State Phenomena. 165 (2010) 310-315.

DOI: 10.4028/www.scientific.net/ssp.165.310

Google Scholar

[39] V.R. Gasyarov, A.A. Radionov, B.M. Loginov, S.S. Voronin and V.R. Khramshin, Improvement of work roll bending control system installed at plate mill stand, ACM International Conference Proceeding Series, Part F127852. (2017) 269-273.

DOI: 10.1145/3057039.3057105

Google Scholar

[40] I.Yu. Andryushin, A.G. Shubin, A.N. Gostev, A.A. Radionov, A.S. Karandaev, V.R. Gasiyarov and V.R. Khramshin, Automatic tension control in the continuous roughing train of a wide-strip hot-rolling mill, Metallurgist. 61(5-6) (2017) 366-374.

DOI: 10.1007/s11015-017-0502-0

Google Scholar

[41] Information on http://www.ptiextruders.com/news/article/featured/2014/01/31/100023/meeting -the-challenges-of-thin-gauge-sheet-extrusion.

Google Scholar

[42] I. Lutsenko, Definition of efficiency indicator and study of its main function as an optimization criterion, Eastern-European Journal of Enterprise Technologies.

DOI: 10.15587/1729-4061.2016.85453

Google Scholar

[43] A.A. Radionov, V.R. Gasiyarov, A.G. Shubin and R.R. Khramshin, Methods of calculation of load modes of roughing stand electric drives of wide-strip hot rolling mill, 13th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering, APEIE 2016 – Proceedings. 3 (2017).

DOI: 10.1109/apeie.2016.7806995

Google Scholar

[44] A.I. Tselikov, H.S. Nikitin and S.Ye. Rokotian, Teoriia prodolnoi prokatki, Theory of longitudinal rolling (in Russian), Moscow, Metallurhiia, (1980).

Google Scholar

[45] A.I. Tselikov, P.I. Polukhin, V.M. Hrebenik, F.K. Ivanchenko, M.A. Tylkin and A.A. Korolev, Mashiny i ahrehaty metallurhicheskikh zavodov, Machines and units of metallurgical factories (in Russian), Moscow, Metallurhiia, (1988).

Google Scholar

[46] V.P. Polukhin, Matematicheskoie modelirovaniie i raschet na EVM listovykh prokatnykh stanov, Mathematical simulation and calculation of sheet rolling mills on a computer (in Russian), Moscow, Metallurhiia, (1972).

Google Scholar

[47] A.H. Prysiazhnyi, Raschetnoie opredeleniie mezhvalkovoi pohonnoi nahruzki v kletiakh kvarto" stanov kholodnoi prokatki s uchetom vliianiia profilirovki i protivoizhiba rabochikh valkov, Calculation definition of load between rolls in the quarto-stands of cold rolling mills with due regard to the influence of trimming and counter-flexure of working rolls (in Russian), Vestnik NTU "KhPI" – Reporter of NTU "KhPI,. 47(953) (2012).

Google Scholar

[48] A.V. Satonin, S.S. Nastoiashchaia and A.H. Prysiazhnyi, Razvitiie inzhenernykh metodov rascheta napriazhenno-deformirovannoho sostoianiia valkovoho uzla chetyrekhvalkovykh rabochikh kletei shirokopolosnykh stanov, The development of engineering methods of calculating the stress-strain state of four-high roll assembly work stands wide strip (in Russian), Obrabotka materialov davleniiem – Materials working by pressure. 4(33) (2012).

Google Scholar

[49] A.V. Satonin, A.H. Prysiazhnyi, A.M. Spaskaia and A.S. Churukanov, Razvitiie chislennykh odnomernykh matematicheskikh modelei napriazhenno-deformirovannoho sostoianiia metalla pri kholodnoi prokatke otnositelno tonkikh polos, Development of numerical of one-dimensional mathematical models of the intense-deformed condition of metal at cold rolling concerning thin strips (in Russian), Obrabotka materialov davleniiem – Materials working by pressure. 2(31) (2012).

Google Scholar