Statistical Analysis of Histograms of Grain Size Distribution in Nanostructured Materials Processed by Severe Plastic Deformation

Article Preview

Abstract:

Analysis of histograms of grain size distribution of materials nanostructured by severe plastic deformation has been carried out using statistical analysis methods. It has been established that in materials with quite homogeneous nanostructure, the fitting of histograms of grain size distribution by using a logarithmic standard distribution is not accurate enough. It is proposed to compensate for the observed imprecision by including into the model the additional component – normal distribution. It is shown that this approach is applicable to nanostructured materials with both the deformation-origin nanostructure and the grain structure formed during annealing.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

431-435

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Mater. 48 (2000) 1-29.

Google Scholar

[2] I.P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures, and Nanomaterials, KomKniga, Moscow, (2006).

Google Scholar

[3] A.I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies, FIZMATLIT, Moscow, (2009).

Google Scholar

[4] A.V. Korznikov, A.N. Tyumentsev, and I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high pressure torsion, Phys. Met. Metallogr. 106 (2008) 418-423.

DOI: 10.1134/s0031918x08100128

Google Scholar

[5] R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Ann. Rev. Mater. Res. 40 (2010) 319-343.

DOI: 10.1146/annurev-matsci-070909-104445

Google Scholar

[6] A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.

DOI: 10.3103/s1062873814090299

Google Scholar

[7] V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin, N.K. Arkhipova, Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained, Phys. Met. Metallogr. 113 (2012) 295-301.

DOI: 10.1134/s0031918x1203009x

Google Scholar

[8] V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal stability of nickel structure obtained by high pressure torsion in liquid nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691.

DOI: 10.1134/s0031918x14070060

Google Scholar

[9] L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure evolution and stability of copper deformed at 80 K, Russian Metallurgy (Metally). (2012) 303-306.

DOI: 10.1134/s0036029512040131

Google Scholar

[10] V.V. Popov, A.V. Stolbovskiy, E.N. Popova, V.P. Pilyugin, Structure and thermal stability of Cu after severe plastic deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.

DOI: 10.4028/www.scientific.net/ddf.297-301.1312

Google Scholar

[11] V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin, Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures, Materials Science and Engineering A. 528 (2011) 1491-1496.

DOI: 10.1016/j.msea.2010.10.052

Google Scholar

[12] I.L. Deryagina, E.N. Popova, E.P. Romanov, E.A. Dergunova, A.E. Vorob'eva, S.M. Balaev, Evolution of the Nanocrystalline Structure of Nb3Sn superconducting layers upon two-stage annealing of Nb/Cu–Sn composites alloyed with titanium, Physics of Metals and Metallography. 113 (2012).

DOI: 10.1134/s0031918x12040047

Google Scholar

[13] E.N. Popova, I.L. Deryagina, Morphology and structure of diffusion layers in nb3sn-based superconductors of different geometry, Diffusion Foundations. 5 (2015) 199-219.

DOI: 10.4028/www.scientific.net/df.5.199

Google Scholar

[14] E.N. Popova, I.L. Deryagina, E.P. Romanov, E.A. Dergunova, A.E. Vorobyova, S.M. Balaev, Solid-State diffusion formation of nanocrystalline Nb3Sn layers at two-staged annealing of multifilamentary Nb/Cu-Sn wires, Journal of Nano Research. 16 (2011).

DOI: 10.4028/www.scientific.net/jnanor.16.69

Google Scholar

[15] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, Grain growth in dynamically recrystallized copper during annealing above and below the temperature of thermally activated nucleation, Diagnostics, Resource and Mechanics of materials and structures. (2016).

DOI: 10.17804/2410-9908.2016.5.015-029

Google Scholar

[16] M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, D.V. Shinyavskii, V.I. Levit, Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation, Phys. Met. Metallogr. 117 (2016).

DOI: 10.1134/s0031918x16110053

Google Scholar

[17] Yu.G. Krasnoperova, M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures, Phys. Met. Metallogr. 117 (2016) 267-274.

DOI: 10.1134/s0031918x16030078

Google Scholar

[18] T.I. Chashchukhina, L.M. Voronova, M.V. Degtyarev, D.K. Pokryshkina, Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils, Phys. Met. Metallogr. 111 (2011) 304-313.

DOI: 10.1134/s0031918x11020049

Google Scholar

[19] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov, V.P. Pilyugin, Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion, Acta Mater. 55 (2007) 6039-6050.

DOI: 10.1016/j.actamat.2007.04.017

Google Scholar

[20] M.V. Degtyarev, L.M. Voronova, T.M. Chashchukhina, Development of recrystallization in various ultrafine structures produced in iron by severe plastic deformation, Bull. Russ. Acad. Sci. Phys. 71 (2007) 242-244.

DOI: 10.3103/s1062873807020232

Google Scholar