[1]
H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Mater. 48 (2000) 1-29.
Google Scholar
[2]
I.P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures, and Nanomaterials, KomKniga, Moscow, (2006).
Google Scholar
[3]
A.I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies, FIZMATLIT, Moscow, (2009).
Google Scholar
[4]
A.V. Korznikov, A.N. Tyumentsev, and I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high pressure torsion, Phys. Met. Metallogr. 106 (2008) 418-423.
DOI: 10.1134/s0031918x08100128
Google Scholar
[5]
R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Ann. Rev. Mater. Res. 40 (2010) 319-343.
DOI: 10.1146/annurev-matsci-070909-104445
Google Scholar
[6]
A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.
DOI: 10.3103/s1062873814090299
Google Scholar
[7]
V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin, N.K. Arkhipova, Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained, Phys. Met. Metallogr. 113 (2012) 295-301.
DOI: 10.1134/s0031918x1203009x
Google Scholar
[8]
V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal stability of nickel structure obtained by high pressure torsion in liquid nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691.
DOI: 10.1134/s0031918x14070060
Google Scholar
[9]
L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure evolution and stability of copper deformed at 80 K, Russian Metallurgy (Metally). (2012) 303-306.
DOI: 10.1134/s0036029512040131
Google Scholar
[10]
V.V. Popov, A.V. Stolbovskiy, E.N. Popova, V.P. Pilyugin, Structure and thermal stability of Cu after severe plastic deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.
DOI: 10.4028/www.scientific.net/ddf.297-301.1312
Google Scholar
[11]
V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin, Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures, Materials Science and Engineering A. 528 (2011) 1491-1496.
DOI: 10.1016/j.msea.2010.10.052
Google Scholar
[12]
I.L. Deryagina, E.N. Popova, E.P. Romanov, E.A. Dergunova, A.E. Vorob'eva, S.M. Balaev, Evolution of the Nanocrystalline Structure of Nb3Sn superconducting layers upon two-stage annealing of Nb/Cu–Sn composites alloyed with titanium, Physics of Metals and Metallography. 113 (2012).
DOI: 10.1134/s0031918x12040047
Google Scholar
[13]
E.N. Popova, I.L. Deryagina, Morphology and structure of diffusion layers in nb3sn-based superconductors of different geometry, Diffusion Foundations. 5 (2015) 199-219.
DOI: 10.4028/www.scientific.net/df.5.199
Google Scholar
[14]
E.N. Popova, I.L. Deryagina, E.P. Romanov, E.A. Dergunova, A.E. Vorobyova, S.M. Balaev, Solid-State diffusion formation of nanocrystalline Nb3Sn layers at two-staged annealing of multifilamentary Nb/Cu-Sn wires, Journal of Nano Research. 16 (2011).
DOI: 10.4028/www.scientific.net/jnanor.16.69
Google Scholar
[15]
M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, Grain growth in dynamically recrystallized copper during annealing above and below the temperature of thermally activated nucleation, Diagnostics, Resource and Mechanics of materials and structures. (2016).
DOI: 10.17804/2410-9908.2016.5.015-029
Google Scholar
[16]
M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, D.V. Shinyavskii, V.I. Levit, Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation, Phys. Met. Metallogr. 117 (2016).
DOI: 10.1134/s0031918x16110053
Google Scholar
[17]
Yu.G. Krasnoperova, M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures, Phys. Met. Metallogr. 117 (2016) 267-274.
DOI: 10.1134/s0031918x16030078
Google Scholar
[18]
T.I. Chashchukhina, L.M. Voronova, M.V. Degtyarev, D.K. Pokryshkina, Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils, Phys. Met. Metallogr. 111 (2011) 304-313.
DOI: 10.1134/s0031918x11020049
Google Scholar
[19]
M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov, V.P. Pilyugin, Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion, Acta Mater. 55 (2007) 6039-6050.
DOI: 10.1016/j.actamat.2007.04.017
Google Scholar
[20]
M.V. Degtyarev, L.M. Voronova, T.M. Chashchukhina, Development of recrystallization in various ultrafine structures produced in iron by severe plastic deformation, Bull. Russ. Acad. Sci. Phys. 71 (2007) 242-244.
DOI: 10.3103/s1062873807020232
Google Scholar