[1]
T. Möller, R. Harjula, M. Pillinger, Uptake of 85Sr, 134Cs and 57Co by antimony silicates doped with Ti4+, Nb5+, Mo6+ and W6+, J. Mater. Chem., 11 (2001) 1526-1532.
DOI: 10.1039/b009888o
Google Scholar
[2]
T. Möller, R. Harjula, P. Kelokaski, K. Vaaramaa, P. Karhu, J. Lehto, Titanium antimonates in various Ti:Sb ratios: ion exchange properties for radionuclide ions, J. Mater. Chem., 13 (2003) 535-541.
DOI: 10.1039/b207028f
Google Scholar
[3]
L. Zhang, J. Wei, X. Zhao, F. Li, F. Jiang, M. Zhang, X. Cheng, Competitive adsorption of strontium and cobalt onto tin antimonite, Chemical Engineering Journal, 285 (2016) 679-689.
DOI: 10.1016/j.cej.2015.10.013
Google Scholar
[4]
D.A. Zakharyevich, Yu.N. Kuryleva, Isolation of radioactive wastes components in antimonates, Radiation Safety, 1 (2015) 15-23.
Google Scholar
[5]
J.D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc., Faraday Trans., 93 (1997) 629-637.
DOI: 10.1039/a606455h
Google Scholar
[6]
J.D. Gale and A.L. Rohl, The general utility lattice program (GULP), Molecular Simulation, 29 (2003) 291-341.
DOI: 10.1080/0892702031000104887
Google Scholar
[7]
D.B. Izergin, D.A. Zakharyevich, The integrated environment for semi-automatic simulations of crystals using GULP program, Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 1 (2016) 118-125.
Google Scholar
[8]
Y.N. Kuryleva, O.A. Chalaya, D.A. Zakharyevich, Phase transitions in perovskite phases of strontium silicoantimonates, Materials Science Forum, 845 (2016) 34-37.
DOI: 10.4028/www.scientific.net/msf.845.34
Google Scholar
[9]
Y.N. Kuryleva O.A. Chalaya., D.A. Zakharyevich, The mechanism of strontium segregation from silicoantimonates at room temperature, CSU Bulletin. Physics Ser., 7 (2015) 38-41.
Google Scholar