[1]
N. Sadeghi, J. Moghaddam, M.J. Ilkhchi, Determination of effective parameters in pilot scale direct leaching of a zinc sulfide concentrate, Physicochemical Problems of Mineral Processing, 1 (2017) 601-616.
Google Scholar
[2]
B. Xu, Y. Yang, Q. Li, T. Jiang, G. Li, Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au, Hydrometallurgy, 159 (2016) 87-94.
DOI: 10.1016/j.hydromet.2015.10.008
Google Scholar
[3]
V.V. Zhukov, A. Laari, M. Lampinen, T. Koiranen, A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate, Chemical Engineerin Research and Design, 118 (2017) 131-141.
DOI: 10.1016/j.cherd.2016.12.004
Google Scholar
[4]
S.S. Naboychenko, L.P. Ni, Y.M. Shneerson, L.V. Chugaev, Autoclave hydrometallurgy of non-ferrous metals, GOU UGTU-UPI, Ekaterinburg, (2002).
Google Scholar
[5]
J.E. Halfyard, K. Hawboldt, Separation of elemental sulfur from hydrometallurgical residue: A review, Hydrometallurgy, 109 (2011) 80-89.
DOI: 10.1016/j.hydromet.2011.05.012
Google Scholar
[6]
M.N. Naftal, S.S. Naboychenko, R.Yu. Sharkiy, A.F. Petrov, N.A. Lapshina, Increasing of extraction of nickel and platinum group metals in technology of autoclave oxidation leaching of nickel-pyrrhotine concentrates, Tsvetnye Metally, 9 (2013).
Google Scholar
[7]
E. Jorjani, A. Ghahreman, Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues, Hydrometallurgy, 171 (2017) 333-343.
DOI: 10.1016/j.hydromet.2017.06.011
Google Scholar
[8]
X. Ouyang, X. Qiu, P. Chen, Physicochemical characterization of calcium lignosulfonate, A potentially useful water reducer, Colloid and Surfaces A: Physicochemical and Engineering Aspects. 282-283 (2006) 489-497.
DOI: 10.1016/j.colsurfa.2005.12.020
Google Scholar
[9]
T.N. Lugovitskaya, S.S. Naboichenko, K.N. Bolatbaev, S.V. Mamyachenkov, Effect of lignosulfonates on the dispersion characteristics of elementary sulfur and zinc sulfide in aqueous suspension, Russian Journal of Non-Ferrous Metals. 5 (2007).
DOI: 10.3103/s1067821207050033
Google Scholar
[10]
T.N. Lugovitskaya, S.S. Naboichenko, K.N. Bolatbaev, Relationships of lignosulfonate adsorption onto the zinc sulfide surface, Russian Journal of Applied Chemistry. 11 (2016) 1831-1837.
DOI: 10.1134/s1070427216110148
Google Scholar
[11]
D. Rana, G.N. Neale, V. Hornof, Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate, Colloid and Polymer Science. 8 (2002) 7750-778.
DOI: 10.1007/s00396-002-0687-y
Google Scholar
[12]
A.V. Sachko, V.P. Zakordonskii, A.S. Voloshnikovskii, T.Y. Golod, The mechanism of interaction of polymethacrylic acid with sodium dodecylbenzenesulfonate in aqueous solutions, Russian Journal of Physical Chemistry A. 7 (2009) 1094-1101.
DOI: 10.1134/s0036024409070085
Google Scholar
[13]
M.N. Naftal', S.S. Naboichenko, E.V. Salimzhanova, O.V. Bol'shakova, T.P. Saverskaya, Influence of various stabilizing factors on an elemental sulfur emulsion during high-temperature leaching of nickel-pyrrhotine concentrates, Russian Metallurgy (Metally). 3 (2015).
DOI: 10.1134/s0036029515030052
Google Scholar
[14]
K. Tan, C. Li, J. Liu, H. Qu, L. Xia, Y. Hu, Y. Li, A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits, Hydrometallurgy. 150 (2014) 99-106.
DOI: 10.1016/j.hydromet.2014.10.001
Google Scholar
[15]
V.V. Sviridov, A.V. Sviridov, A.F. Nikiforov, Physics and chemistry of microflotation, GOU VPO UGTU-UPI, Ekaterinburg, (2006).
Google Scholar
[16]
D.J.C. Gomes, N.C. De Souza, J.R. Silva, Using a monocular optical microscope to assemble a wetting contact angle analyser, Measurement: Journal of the International Measurement Confederation. 9 (2013) 3623-3627.
DOI: 10.1016/j.measurement.2013.07.010
Google Scholar
[17]
K.Y. Law, H. Zhao, Surface wetting: Characterization, contact angle, and fundamentals, Springer International Publishing, Switzerland, (2015).
Google Scholar
[18]
B. Pu, D. Chen, A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method: I. Using a back-suction syringe technique, Journal of Colloid and Interface Science. 2 (2001) 262-272.
DOI: 10.1006/jcis.2000.7385
Google Scholar
[19]
A.V. Sachko, V.P. Zakordonskii, A.S. Voloshnikovskii, Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate, Russian Journal of Physical Chemistry A. 3 (2013).
DOI: 10.1134/s0036024413030254
Google Scholar
[20]
Z.M. Yaremko, L.B. Fedushinskaya, O.A. Burka, M.N. Sltys, Hydrophobic interaction between polymethactylic acid and sodium laureth sulfate in aqueous solutions, Russian Journal of Physical Chemistry A. 9 (2014) 1510-1513.
DOI: 10.1134/s0036024414090313
Google Scholar