Influence of Zinc Sulfide Wetting in Surfactants Presence on Leaching Parameters

Article Preview

Abstract:

This paper is describing an investigation of surfactants influence on zinc sulfide wetting by non-polar liquids and sphalerite concentrates pressure leaching parameters. Zinc sulfide preferential wettability by oil was tested in presence anionic surfactants with different chemical structures. Interfacial tension was determinated by the maximum liquid drop volume method. It allows to determine surfactant potential effectivity on pressure leaching of sphalerite concentrate. It is found that SDBS decreases zinc sulfide wettability by non-polar liquids in a greater degree than SDS and Ls. Combined addition of Ls and SDBS allowed to receive residues with optimal coarseness, eliminate pellet formation and increase zinc extraction.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

737-742

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Sadeghi, J. Moghaddam, M.J. Ilkhchi, Determination of effective parameters in pilot scale direct leaching of a zinc sulfide concentrate, Physicochemical Problems of Mineral Processing, 1 (2017) 601-616.

Google Scholar

[2] B. Xu, Y. Yang, Q. Li, T. Jiang, G. Li, Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au, Hydrometallurgy, 159 (2016) 87-94.

DOI: 10.1016/j.hydromet.2015.10.008

Google Scholar

[3] V.V. Zhukov, A. Laari, M. Lampinen, T. Koiranen, A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate, Chemical Engineerin Research and Design, 118 (2017) 131-141.

DOI: 10.1016/j.cherd.2016.12.004

Google Scholar

[4] S.S. Naboychenko, L.P. Ni, Y.M. Shneerson, L.V. Chugaev, Autoclave hydrometallurgy of non-ferrous metals, GOU UGTU-UPI, Ekaterinburg, (2002).

Google Scholar

[5] J.E. Halfyard, K. Hawboldt, Separation of elemental sulfur from hydrometallurgical residue: A review, Hydrometallurgy, 109 (2011) 80-89.

DOI: 10.1016/j.hydromet.2011.05.012

Google Scholar

[6] M.N. Naftal, S.S. Naboychenko, R.Yu. Sharkiy, A.F. Petrov, N.A. Lapshina, Increasing of extraction of nickel and platinum group metals in technology of autoclave oxidation leaching of nickel-pyrrhotine concentrates, Tsvetnye Metally, 9 (2013).

Google Scholar

[7] E. Jorjani, A. Ghahreman, Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues, Hydrometallurgy, 171 (2017) 333-343.

DOI: 10.1016/j.hydromet.2017.06.011

Google Scholar

[8] X. Ouyang, X. Qiu, P. Chen, Physicochemical characterization of calcium lignosulfonate, A potentially useful water reducer, Colloid and Surfaces A: Physicochemical and Engineering Aspects. 282-283 (2006) 489-497.

DOI: 10.1016/j.colsurfa.2005.12.020

Google Scholar

[9] T.N. Lugovitskaya, S.S. Naboichenko, K.N. Bolatbaev, S.V. Mamyachenkov, Effect of lignosulfonates on the dispersion characteristics of elementary sulfur and zinc sulfide in aqueous suspension, Russian Journal of Non-Ferrous Metals. 5 (2007).

DOI: 10.3103/s1067821207050033

Google Scholar

[10] T.N. Lugovitskaya, S.S. Naboichenko, K.N. Bolatbaev, Relationships of lignosulfonate adsorption onto the zinc sulfide surface, Russian Journal of Applied Chemistry. 11 (2016) 1831-1837.

DOI: 10.1134/s1070427216110148

Google Scholar

[11] D. Rana, G.N. Neale, V. Hornof, Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate, Colloid and Polymer Science. 8 (2002) 7750-778.

DOI: 10.1007/s00396-002-0687-y

Google Scholar

[12] A.V. Sachko, V.P. Zakordonskii, A.S. Voloshnikovskii, T.Y. Golod, The mechanism of interaction of polymethacrylic acid with sodium dodecylbenzenesulfonate in aqueous solutions, Russian Journal of Physical Chemistry A. 7 (2009) 1094-1101.

DOI: 10.1134/s0036024409070085

Google Scholar

[13] M.N. Naftal', S.S. Naboichenko, E.V. Salimzhanova, O.V. Bol'shakova, T.P. Saverskaya, Influence of various stabilizing factors on an elemental sulfur emulsion during high-temperature leaching of nickel-pyrrhotine concentrates, Russian Metallurgy (Metally). 3 (2015).

DOI: 10.1134/s0036029515030052

Google Scholar

[14] K. Tan, C. Li, J. Liu, H. Qu, L. Xia, Y. Hu, Y. Li, A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits, Hydrometallurgy. 150 (2014) 99-106.

DOI: 10.1016/j.hydromet.2014.10.001

Google Scholar

[15] V.V. Sviridov, A.V. Sviridov, A.F. Nikiforov, Physics and chemistry of microflotation, GOU VPO UGTU-UPI, Ekaterinburg, (2006).

Google Scholar

[16] D.J.C. Gomes, N.C. De Souza, J.R. Silva, Using a monocular optical microscope to assemble a wetting contact angle analyser, Measurement: Journal of the International Measurement Confederation. 9 (2013) 3623-3627.

DOI: 10.1016/j.measurement.2013.07.010

Google Scholar

[17] K.Y. Law, H. Zhao, Surface wetting: Characterization, contact angle, and fundamentals, Springer International Publishing, Switzerland, (2015).

Google Scholar

[18] B. Pu, D. Chen, A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method: I. Using a back-suction syringe technique, Journal of Colloid and Interface Science. 2 (2001) 262-272.

DOI: 10.1006/jcis.2000.7385

Google Scholar

[19] A.V. Sachko, V.P. Zakordonskii, A.S. Voloshnikovskii, Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate, Russian Journal of Physical Chemistry A. 3 (2013).

DOI: 10.1134/s0036024413030254

Google Scholar

[20] Z.M. Yaremko, L.B. Fedushinskaya, O.A. Burka, M.N. Sltys, Hydrophobic interaction between polymethactylic acid and sodium laureth sulfate in aqueous solutions, Russian Journal of Physical Chemistry A. 9 (2014) 1510-1513.

DOI: 10.1134/s0036024414090313

Google Scholar