[1]
S.H. Chae, Y.H. Lee, Carbon nanotubes and graphene towards soft electronics, Nano Convergence, 1 (2014) 15.
Google Scholar
[2]
P.R. Bandaru, Electrical properties and applications of carbon nanotube structures, J Nanosci Nanotechnol, 7 (2007) 1-29.
Google Scholar
[3]
P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nature Photonics, 2 (2008) 341-350.
DOI: 10.1038/nphoton.2008.94
Google Scholar
[4]
Q. Zeng, S. Wang, L. Yang, Z. Wang, T. Pei, Z. Zhang, L.-M. Peng, W. Zhou, J. Liu, W. Zhou, S. Xie, Carbon nanotube arrays based high-performance infrared photodetector [Invited], Opt. Mater. Express, 2(2012) 839-848.
DOI: 10.1364/ome.2.000839
Google Scholar
[5]
A.C. Brandao-Silva, et al., Near infrared nonlinear refractive index dispersion of metallic and semiconducting single-wall carbon nanotube colloids, Carbon, 77 (2014) 939-946.
DOI: 10.1016/j.carbon.2014.06.008
Google Scholar
[6]
O.S. Zueva, V.V. Salnikov, Yu.N. Osin, Yu.F. Zuev, Influence of carbon nanotubes on surfactants supramolecular structures, Liq. Cryst. and their Appl, 16 (1) (2016) 90-96.
DOI: 10.18083/lcappl.2016.1.90
Google Scholar
[7]
E.R. Zvereva, O.S. Zueva, R.V. Khabibullina, A.O. Makarova, Nanomaterial effect study in the viscosity characteristics of fuel oil and alternative fuels used at fuel and energy complex enterprises, Journal of Engineering and Applied Sciences, 11 (2016).
Google Scholar
[8]
E.R. Zvereva, R.V. Khabibullina, G.R. Akhmetvalieva, et al., Influence of nanoadditives on rheological properties of fuel oil, Advances in Engineering Research, 133 (2017) 914-920.
DOI: 10.2991/aime-17.2017.148
Google Scholar
[9]
E.R. Zvereva, et al., Effect of carbon-nanotube-based additives on rheological properties of liquid boiler fuel, Chem. Technol. Fuels Oils, 52 (2016) 488-494.
DOI: 10.1007/s10553-016-0734-x
Google Scholar
[10]
E.R. Zvereva, O.S. Zueva, R.V. Khabibullina, Improvement of liquid organic fuel oils operational characteristics with additives, Mater. Sci. Forum, 870 (2016) 666-670.
DOI: 10.4028/www.scientific.net/msf.870.666
Google Scholar
[11]
E.R. Zvereva, R.V. Khabibullina, O.S. Zueva, Nano additives influence on fuel oil properties, Solid State Phenomena, 265 (2017) 374-378.
DOI: 10.4028/www.scientific.net/ssp.265.374
Google Scholar
[12]
L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, 128-130 (2006) 37-46.
DOI: 10.1016/j.cis.2006.11.007
Google Scholar
[13]
O.S. Zueva, Y.N. Osin, V.V. Salnikov, Y.F. Zuev, Research of carbon nanotubes suspensions: the emergence of mesoscopic structures from the self-assembly of surfactant molecules, Fundamental research, 11 (2014) 1021-1027.
Google Scholar
[14]
O.S. Zueva, et al., Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes, Russ. Chem. Bull., 65 (2016) 1208-1215.
DOI: 10.1007/s11172-016-1437-5
Google Scholar
[15]
A.T. Gubaidullin, et al., Structure and dynamics of concentrated micellar solutions of sodium dodecyl sulfate, Russ. Chem. Bull., 65 (2016) 158-166.
DOI: 10.1007/s11172-016-1278-2
Google Scholar
[16]
A.O. Borovskaya, B.Z. Idiatullin, O.S. Zueva, Carbon nanotubes in the surfactants dispersion: formation of the microenvironment, J. Phys. Conf. Ser., 690 (2016) 012030.
DOI: 10.1088/1742-6596/690/1/012030
Google Scholar
[17]
O.S. Zueva, A.O. Makarova, D.A. Faizullin, Creating carbon nanotubes microenvironment in surfactant water solutions, Solid State Phenomena, 265 (2017) 342-347.
DOI: 10.4028/www.scientific.net/ssp.265.342
Google Scholar
[18]
N. Li, et al., Effect of pH, surface charge and counter-ions on the adsorption of sodium dodecyl sulfate to the sapphire/solution interface, J. Colloid Interface Sci., 378 (2012) 152-158.
DOI: 10.1016/j.jcis.2012.04.026
Google Scholar
[19]
M.D. Clark, S. Subramanian, R. Krishnamoorti, Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes, J. Colloid Interface Sci., 354 (2011) 144-151.
DOI: 10.1016/j.jcis.2010.10.027
Google Scholar
[20]
A.B. Mirgorodskaya, et al., Catalysis of the hydrolysis of phosphorus acids esters by the mixed micelles of long-chain amines and bromide, Mendeleev Commun., 5 (1999) 196-197A.
DOI: 10.1070/mc1999v009n05abeh001127
Google Scholar
[21]
L.Y. Zakharova, et al., Effect of electrolytes on the catalytic properties and sructural characteristics of dodecylpyridinium bromide micelles, Russ. J. Gen. Chem., 72 (3) (2002) 426-431.
Google Scholar
[22]
Yu.F. Zuev, O.I. Gnezdilov, O.S. Zueva, and O.G. Us'yarov, Effective self_diffusion coefficients of ions in sodium dodecyl sulfate micellar solutions, Colloid J., 73 (2011) 59-64.
DOI: 10.1134/s1061933x11010224
Google Scholar
[23]
O. I. Gnezdilov, et al., Self-Diffusion of ionic surfactants and counterions in premicellar and micellar solutions of sodium, lithium and cesium dodecyl sulfates as studied by NMR-diffusometry, Appl. Magn. Reson., 40 (2011) 91-103.
DOI: 10.1007/s00723-010-0185-1
Google Scholar
[24]
B. Z. Idiyatullin, K. S. Potarikina, et al., Association of sodium dodecyl sulfate in aqueous solutions according to chemical shifts in 1H NMR spectra, Colloid J., 75 (2013) 532-537.
DOI: 10.1134/s1061933x13050037
Google Scholar
[25]
C.A. Bunton, F. Nome, F.N. Quina, L.S. Romsted, Ion binding and reactivity at charged aqueous interfaces, Accounts of Chemical Research, 24 (12) (1991) 357-364.
DOI: 10.1021/ar00012a001
Google Scholar
[26]
M. Pisárčik, F. Devínsky, M. Pupák, Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching, Open Chem., 13 (2015) 922-931.
DOI: 10.1515/chem-2015-0103
Google Scholar