Carbon Nanotubes Microenvironment in Ionic Surfactant Water Solutions

Article Preview

Abstract:

The processes of aggregation of anionic (SDS) and cationic (CTAB) molecules into supramolecular formations and the effect of carbon nanotubes on the processes were investigated by conductometry and tensiometry methods. Concentration dependences of the specific electrical conductivity and surface tension of aqueous SDS and CTAB dispersions and suspensions of carbon nanotubes of the carbon nanomaterial Taunit in these dispersions were obtained. A conclusion on the change in the conformation of CTAB micelles in the presence of carbon nanotubes was drawn. A significant increase in the packing density of CTAB molecules and their ordering in the monomolecular layer at the water-air interface in the presence of carbon nanotubes was shown. In particular, this makes it possible to control the properties of the surfactant surface layer by means of carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

713-718

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.H. Chae, Y.H. Lee, Carbon nanotubes and graphene towards soft electronics, Nano Convergence, 1 (2014) 15.

Google Scholar

[2] P.R. Bandaru, Electrical properties and applications of carbon nanotube structures, J Nanosci Nanotechnol, 7 (2007) 1-29.

Google Scholar

[3] P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nature Photonics, 2 (2008) 341-350.

DOI: 10.1038/nphoton.2008.94

Google Scholar

[4] Q. Zeng, S. Wang, L. Yang, Z. Wang, T. Pei, Z. Zhang, L.-M. Peng, W. Zhou, J. Liu, W. Zhou, S. Xie, Carbon nanotube arrays based high-performance infrared photodetector [Invited], Opt. Mater. Express, 2(2012) 839-848.

DOI: 10.1364/ome.2.000839

Google Scholar

[5] A.C. Brandao-Silva, et al., Near infrared nonlinear refractive index dispersion of metallic and semiconducting single-wall carbon nanotube colloids, Carbon, 77 (2014) 939-946.

DOI: 10.1016/j.carbon.2014.06.008

Google Scholar

[6] O.S. Zueva, V.V. Salnikov, Yu.N. Osin, Yu.F. Zuev, Influence of carbon nanotubes on surfactants supramolecular structures, Liq. Cryst. and their Appl, 16 (1) (2016) 90-96.

DOI: 10.18083/lcappl.2016.1.90

Google Scholar

[7] E.R. Zvereva, O.S. Zueva, R.V. Khabibullina, A.O. Makarova, Nanomaterial effect study in the viscosity characteristics of fuel oil and alternative fuels used at fuel and energy complex enterprises, Journal of Engineering and Applied Sciences, 11 (2016).

Google Scholar

[8] E.R. Zvereva, R.V. Khabibullina, G.R. Akhmetvalieva, et al., Influence of nanoadditives on rheological properties of fuel oil, Advances in Engineering Research, 133 (2017) 914-920.

DOI: 10.2991/aime-17.2017.148

Google Scholar

[9] E.R. Zvereva, et al., Effect of carbon-nanotube-based additives on rheological properties of liquid boiler fuel, Chem. Technol. Fuels Oils, 52 (2016) 488-494.

DOI: 10.1007/s10553-016-0734-x

Google Scholar

[10] E.R. Zvereva, O.S. Zueva, R.V. Khabibullina, Improvement of liquid organic fuel oils operational characteristics with additives, Mater. Sci. Forum, 870 (2016) 666-670.

DOI: 10.4028/www.scientific.net/msf.870.666

Google Scholar

[11] E.R. Zvereva, R.V. Khabibullina, O.S. Zueva, Nano additives influence on fuel oil properties, Solid State Phenomena, 265 (2017) 374-378.

DOI: 10.4028/www.scientific.net/ssp.265.374

Google Scholar

[12] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, 128-130 (2006) 37-46.

DOI: 10.1016/j.cis.2006.11.007

Google Scholar

[13] O.S. Zueva, Y.N. Osin, V.V. Salnikov, Y.F. Zuev, Research of carbon nanotubes suspensions: the emergence of mesoscopic structures from the self-assembly of surfactant molecules, Fundamental research, 11 (2014) 1021-1027.

Google Scholar

[14] O.S. Zueva, et al., Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes, Russ. Chem. Bull., 65 (2016) 1208-1215.

DOI: 10.1007/s11172-016-1437-5

Google Scholar

[15] A.T. Gubaidullin, et al., Structure and dynamics of concentrated micellar solutions of sodium dodecyl sulfate, Russ. Chem. Bull., 65 (2016) 158-166.

DOI: 10.1007/s11172-016-1278-2

Google Scholar

[16] A.O. Borovskaya, B.Z. Idiatullin, O.S. Zueva, Carbon nanotubes in the surfactants dispersion: formation of the microenvironment, J. Phys. Conf. Ser., 690 (2016) 012030.

DOI: 10.1088/1742-6596/690/1/012030

Google Scholar

[17] O.S. Zueva, A.O. Makarova, D.A. Faizullin, Creating carbon nanotubes microenvironment in surfactant water solutions, Solid State Phenomena, 265 (2017) 342-347.

DOI: 10.4028/www.scientific.net/ssp.265.342

Google Scholar

[18] N. Li, et al., Effect of pH, surface charge and counter-ions on the adsorption of sodium dodecyl sulfate to the sapphire/solution interface, J. Colloid Interface Sci., 378 (2012) 152-158.

DOI: 10.1016/j.jcis.2012.04.026

Google Scholar

[19] M.D. Clark, S. Subramanian, R. Krishnamoorti, Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes, J. Colloid Interface Sci., 354 (2011) 144-151.

DOI: 10.1016/j.jcis.2010.10.027

Google Scholar

[20] A.B. Mirgorodskaya, et al., Catalysis of the hydrolysis of phosphorus acids esters by the mixed micelles of long-chain amines and bromide, Mendeleev Commun., 5 (1999) 196-197A.

DOI: 10.1070/mc1999v009n05abeh001127

Google Scholar

[21] L.Y. Zakharova, et al., Effect of electrolytes on the catalytic properties and sructural characteristics of dodecylpyridinium bromide micelles, Russ. J. Gen. Chem., 72 (3) (2002) 426-431.

Google Scholar

[22] Yu.F. Zuev, O.I. Gnezdilov, O.S. Zueva, and O.G. Us'yarov, Effective self_diffusion coefficients of ions in sodium dodecyl sulfate micellar solutions, Colloid J., 73 (2011) 59-64.

DOI: 10.1134/s1061933x11010224

Google Scholar

[23] O. I. Gnezdilov, et al., Self-Diffusion of ionic surfactants and counterions in premicellar and micellar solutions of sodium, lithium and cesium dodecyl sulfates as studied by NMR-diffusometry, Appl. Magn. Reson., 40 (2011) 91-103.

DOI: 10.1007/s00723-010-0185-1

Google Scholar

[24] B. Z. Idiyatullin, K. S. Potarikina, et al., Association of sodium dodecyl sulfate in aqueous solutions according to chemical shifts in 1H NMR spectra, Colloid J., 75 (2013) 532-537.

DOI: 10.1134/s1061933x13050037

Google Scholar

[25] C.A. Bunton, F. Nome, F.N. Quina, L.S. Romsted, Ion binding and reactivity at charged aqueous interfaces, Accounts of Chemical Research, 24 (12) (1991) 357-364.

DOI: 10.1021/ar00012a001

Google Scholar

[26] M. Pisárčik, F. Devínsky, M. Pupák, Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching, Open Chem., 13 (2015) 922-931.

DOI: 10.1515/chem-2015-0103

Google Scholar