[1]
N.S. Lupandina, Zh.A. Sapronova, Sewage purification from heavy metals by production wastes of bioses, BSTU, Belgorod, (2012).
Google Scholar
[2]
GN 2.1.5.689-98 Threshold Limit Values (TLV) of chemicals in water of water objects of economic and cultural- community water use. Russian Ministry of Health, Moscow, (1998).
Google Scholar
[3]
О.F. Filenko, I.V. Mikheeva, Basics of aquatic toxicology, Kolos, (2007).
Google Scholar
[4]
A.A. Povarov, V.F. Pavlova, N.A. Shinenkova, I.I. Nacheva, O.N. Kolomintseva, Wastewater treatment of galvanic plants, Production Ecology 5 (2007) 68-71.
Google Scholar
[5]
O.P. Akayev, A.D. Tsvetkova, A.V. Sviridov, T.K. Akayeva, Patent 2425807 C1 RU (2011).
Google Scholar
[6]
I.O. Iskhakova, V.E. Tkachev, Innovative methods of sewage treatment of modern galvanic production, Bulletin University of technology (KNRTU). 19(10) (2016) 243-246.
Google Scholar
[7]
Walid Abdel-Halim, Dirk Weichgrebe, K.-H. Rosenwinkel and Johan Verink, Sustanable sewage treatment and re-use in developing countries 12-th international conference, 2008, рр: 1397-1409.
Google Scholar
[8]
N.Yu. Kiryushina, G.I. Tarasova, S.V. Sverguzova, Slag waste in water treatment, Bulletin of BSTU. V.G. Shukhov 4 (2010) 140-145.
Google Scholar
[9]
S.V. Svergunova, L.A. Porozhnyuk, D.Y. Ipanov, A.V. Shamshurov, E.V. Novikova, Colloid chemical Properties of Electric Arc furnaces Dust in Processes of Wastewater Treatment, Ecology and Industry of Russia, 7 (2013) 22-25.
Google Scholar
[10]
N. Yu. Kiryushina, S. V. Sverguzova, Purification of electroplating industry wastewater from Fe2+, Fe3+, Zn2+ ions with electric-furnace steelmaking slag. Monograph, Belgorod, (2013).
Google Scholar
[11]
S. Greg, K. Singh, Adsorption. Specific surface area. Porosity, The World, Moscow, (1984).
Google Scholar
[12]
N.Y. Kiryushina, Peculiarities of Purification of Wastewaters of Electroplating Industries from Ions of Heavy Metals by the Slag of Electric Furnace Steelmaking, Water Treatment, 6 (2013) 44-58.
Google Scholar
[13]
S.V. Svergunova, L.A. Porozhnyuk, E.V. Sukhanov, E.V. Fomina, L.V. Denisova, I.G. Shaihiev, Some of the features of coagulation treatment of water using a dust of electric steel production, Bulletin University of technology (KNRTU), 19(9) (2016).
Google Scholar
[14]
Yu.М. Butt, V.V. Timashev, Practical course of binding materials chemical technology: Study guide for chemical and engineering specialties in higher educational institutions, Vysshaya shkola, Moscow, (1973).
Google Scholar
[15]
H. El-Fadaly, Chemical and microbiological Analyses of certain water sources and industrial wastewater samples in Egypt, Pakistan Journal of biological Sciences. 3 (2010) 777-781.
DOI: 10.3923/pjbs.2000.777.781
Google Scholar
[16]
V.S. Gorshkov, V.V. Timashev, V.G. Saveliev, Methods of physico-chemical analysis of binders, High School, Moscow, (1981).
Google Scholar
[17]
S.S. Gorelik, Yu.A. Skakov, L.N. Rastorguev, X-ray and electron-optical analysis, MISIS, Moscow, 2000.
Google Scholar
[18]
L.I. Mirkin, X-ray polycrystal structure analysis. Reference book, Fizmatlit, (1961).
Google Scholar
[19]
N.S. Lupandina, Zh.A. Sapronova, Increasing of water bodies quality as a factor of increasing of ecological safety, Bulletin of BSTU. V.G. Shukhov 1 (2012) 136-139.
Google Scholar
[20]
N.Yu. Kiryushina, N.S. Lupandina, Pore-forming additives for ceramic gravel production made of technogenic material. Materials Science Forum Submitted 06-12 (2016) 196-201.
DOI: 10.4028/www.scientific.net/msf.870.196
Google Scholar
[21]
N.S. Lupandina, N.Yu. Kiryushina, E.V. Porozhnyuk, Extension of Raw Material Base for Ceramic Building Bricks Production, Solid State Phenomena, 265(2017) 352-358.
DOI: 10.4028/www.scientific.net/ssp.265.352
Google Scholar