Correlation between Microstructure and Properties of Semi-Solid Products

Article Preview

Abstract:

Since the very first production trials, it was evident that semi-solid components exhibit excellent mechanical properties, comparable to those of forged material and, in any case, better than permanent mold castings. Over the years, these findings have been confirmed by many authors. Most of the papers available in scientific literature deals with the demonstration of this improvement, especially in order to show the reliability of new and alternative production routes. On the contrary, only some studies focus their attention on the relationship between enhanced mechanical properties and the microstructure. However, it is demonstrated that the increased performance of semi-solid components is not only due to the absence of porosity, but there is a clear relationship between microstructure and properties. This paper reports about the state of knowledge in this subject, in particular for what concerns tensile, fatigue, wear and corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 285)

Pages:

12-23

Citation:

Online since:

January 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Koke, M. Modigell, Flow behaviour of semi-solid metal alloys, Journal of Non-Newtonian Fluid Mechanics, Vol. 112, n. 2-3, pp.141-160, (2003).

DOI: 10.1016/s0377-0257(03)00080-6

Google Scholar

[2] M. Modigell, J. Koke, Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes, Journal of Materials Processing Technology, vol. 111, n. 1-3, pp.53-58,, (2001).

DOI: 10.1016/s0924-0136(01)00496-4

Google Scholar

[3] M. Flemings, Behavior of metal alloys in the semisolid state, Metallurgical Transactions A, Vol. 22A, pp.957-981, (1991).

DOI: 10.1007/bf02661090

Google Scholar

[4] D. Kirkwood, Semisolid metal processing, International Materials Reviews, Vol. 39, n. 5, pp.173-189, (1994).

Google Scholar

[5] D. Spencer, R. Mehrabian, M. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range, Metallurgical Transactions, Vol. 3, n. 7, pp.1925-1932, (1972).

DOI: 10.1007/bf02642580

Google Scholar

[6] J. Chen, Z. Fan, Modelling of rheological behaviour of semisolid metal slurries: Part 1 - Theory, Materials Science and Technology, Vol. 18, n. 3, pp.237-242, (2002).

DOI: 10.1179/026708301225000662

Google Scholar

[7] A. Alexandrou, F. Bardinet, W. Loué, Mathematical and computational modeling of die filling in semisolid metal processing, Journal of Materials Processing Technology, Vol. 96, n. 1-3, pp.59-72, (1999).

DOI: 10.1016/s0924-0136(99)00316-7

Google Scholar

[8] M. Modigell, J. Koke, Time-dependent rheological properties of semi-solid metal alloys, Mechanics Time-Dependent Materials, Vol. 3, n. 1, pp.15-30, (1999).

DOI: 10.1023/a:1009856708511

Google Scholar

[9] M. Hufschmidt, M. Modigell, J. Petera, Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions, Journal of Non-Newtonian Fluid Mechanics, vol. 134 , n. 1-3 SPEC. ISS., pp.16-26, (2006).

DOI: 10.1016/j.jnnfm.2005.10.006

Google Scholar

[10] A. Pola, R. Roberti, M. Modigell, L. Pape, Rheological characterization of a new alloy for thixoforming, Solid State Phenomena, Vol. 141-143, pp.301-306, (2008).

DOI: 10.4028/www.scientific.net/ssp.141-143.301

Google Scholar

[11] G. Hirt, R. Kopp, Thixoforming: Semi-solid Metal Processing, Weinheim: Wiley-VCH, Verlag GmbH & Co. KGaA,, (2008).

Google Scholar

[12] S. Midson, Rheocasting processes for semi-solid casting of aluminum alloys, Die Casting Engineer, Vol. 50, n. 1, pp.48-51, (2006).

Google Scholar

[13] D. Kirkwood, M. Suéry, P. Kapranos, H. Atkinson, K. Young, Semi-solid Processing of Alloys, Springer-Verlag, (2010).

DOI: 10.1007/978-3-642-00706-4

Google Scholar

[14] S. Nafisi, R. Ghomashchi, Semi-Solid Processing of Aluminum Alloys, Springer, (2016).

Google Scholar

[15] A. Pola, M. Tocci, P. Kapranos, Microstructure and properties of semi-solid aluminum alloys: A literature review, Metals, Vol. 8, n. 3, p.181, (2018).

DOI: 10.3390/met8030181

Google Scholar

[16] J. Yurko, R. Boni, Semi-solid rheocasting | [SSRTM semi-solid rheocasting], Metallurgia Italiana, vol. 98, n. 3, pp.35-4198, (2006).

Google Scholar

[17] J. Wannasin, R. Martinez, M. Flemings, A novel technique to produce metal slurries for semi-solid metal processing, Solid State Phenomena, Vol. 116-117, pp.366-369, (2006).

DOI: 10.4028/www.scientific.net/ssp.116-117.366

Google Scholar

[18] P. Giordano, G. Chiarmetta, New rheocasting: A valid alternative to the traditional technologies for the production of automotive suspension parts, in 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004, Limassol; Cyprus, (2004).

Google Scholar

[19] E. Cardoso, H. Atkinson, H. Jones, Microstructural evolution of A356 during NRC processing, in 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004, Limassol, Cyprus, (2004).

Google Scholar

[20] V. Abramov, O. Abramov, B. Straumal, W. Gust, Hypereutectic Al–Si based alloys with a thixotropic microstructure produced by ultrasonic treatment, Materials and Design, Vol. 18, n. 4-6, pp.323-326, (1997).

DOI: 10.1016/s0261-3069(97)00072-1

Google Scholar

[21] A. Pola, A. Arrighini, R. Roberti, Effect of ultrasounds treatment on alloys for semisolid application, Solid State Phenomena , Vol. 141-143, pp.481-486, (2008).

DOI: 10.4028/www.scientific.net/ssp.141-143.481

Google Scholar

[22] O. Granath, M. Wessén, H. Cao, Porosity reduction possibilities in commercial aluminium A380 and magnesium AM60 alloy components using the rheometal[TM] process, in 4th International Conference High tech Die Casting, Brescia, (2008).

Google Scholar

[23] T. Haga, S. Suzuki, Casting of aluminum alloy ingots for thixoforming using a cooling slope, Journal of Materials Processing Technology, Vol. 118, n. 1-3, pp.169-172, (2001).

DOI: 10.1016/s0924-0136(01)00888-3

Google Scholar

[24] M. Findon, A. de Figueredo, D. Apelian, M. Makhlouf, Melt mixing approaches for the formation of thixotropic semisolid metal structure, in 7th International Conference on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, (2002).

Google Scholar

[25] J. Langlais, A. Lemieux, The SEED technology for semi-solid processing of aluminum alloys: A metallurgical and process overview, Solid State Phenomena, Vol. 116-117, pp.472-477, (2006).

DOI: 10.4028/www.scientific.net/ssp.116-117.472

Google Scholar

[26] F. Niedermaier, J. Langgartner, G. Hirt, I. Niedick, Horizontal continuous casting of SSM billets, in Fifth International Conference on Semi-Solid Processing of Alloys and Composites, Golden, (1998).

Google Scholar

[27] M. Kenney, J. Courtois, R. Evans, G. Farrior, C. Kyonka, Semisolid Metal Casting and Forging, Metal Handbook, Vol. 15, Casting,, Des Plaines: ASM Publication, (2002).

Google Scholar

[28] E. Tzimas, A. Zavaliangos, Evolution of near-equiaxed microstructure in the semisolid state, Materials Science and Engineering: A, Vol. 289, n. 1-2, pp.228-240, (2000).

DOI: 10.1016/s0921-5093(00)00908-4

Google Scholar

[29] H. Atkinson, Modelling the semisolid processing of metallic alloys, Progress in Materials Science, Vol. 50, pp.341-412, (2005).

DOI: 10.1016/j.pmatsci.2004.04.003

Google Scholar

[30] M. Mohammed, M. Omar, M. Salleh, K. Alhawari, P. Kapranos, Semisolid metal processing techniques for nondendritic feedstock production, The Scientific World Journal, n. 752175, (2013).

DOI: 10.1155/2013/752175

Google Scholar

[31] S. Nafisi, R. Ghomashchi, Semi-solid metal processing routes: An overview, Canadian Metallurgical Quarterly, Vol. 44, n. 3, pp.289-304, (2005).

DOI: 10.1179/cmq.2005.44.3.289

Google Scholar

[32] Z. Fan, Semisolid metal processing, International Materials Reviews, Vol. 47, n. 2, pp.49-86, (2002).

Google Scholar

[33] A. Vogel, R. Doherty, B. Cantor, Stir-cast microstructure and slow crack growth, in Solidification and Casting of Metals: Proceedings of an International Conference on Solidification, London - UK, (1979).

Google Scholar

[34] R. Doherty, H.-I. Lee, E. Feest, Microstructure of stir-cast metals, Materials Science and Engineering, Vol. 65, n. 1, pp.181-189, (1984).

DOI: 10.1016/0025-5416(84)90211-8

Google Scholar

[35] W. Loué, M. Suéry, Microstructural evolution during partial remelting of Al-Si7Mg alloys, Materials Science and Engineering A, Vol. 203, pp.1-13, (1995).

DOI: 10.1016/0921-5093(95)09861-5

Google Scholar

[36] J. Molenaar, L. Katgerman, W. Kool, R. Smeulders, On the formation of the stircast structure, Journal of materials science, Vol. 21, pp.389-394, (1986).

DOI: 10.1007/bf01145499

Google Scholar

[37] A. Hellawell, Grain evoluation in conventional rheocasting, in 4th International Conference on Semi-Solid Processing of Alloys and Composites, Sheffield - UK, (1996).

Google Scholar

[38] J. Campbell, Casting, Ch. 9, Oxford: Butterworth-Heinemann, (2003).

Google Scholar

[39] P. Kapranos, T. Haga, E. Bertoli, A. Pola, Z. Azpilgain, I. Hurtado, Thixo-extrusion of 5182 aluminium alloy, Solid State Phenomena, Vol. 141-143, pp.115-120, (2008).

DOI: 10.4028/www.scientific.net/ssp.141-143.115

Google Scholar

[40] D. Apelian, Semi-Solid Processing Routes and Microstructure Evolution, in Proceedings of the Seventh International Conference titled Advanced Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, (2002).

Google Scholar

[41] Ł. Rogal, Critical assessment: opportunities in developing semi-solid processing: aluminium, magnesium, and high-temperature alloys, Materials Science and Technology , Vol. 33, n. 7, pp.759-764, (2017).

DOI: 10.1080/02670836.2017.1295212

Google Scholar

[42] A. Kazakov, Alloy compositions for semisolid forming, Advanced Materials and Processes, Vol. 157, n. 3, pp.31-34, (2000).

Google Scholar

[43] D. Liu, H. Atkinson, P. Kapranos, W. Jirattiticharoean e H. Jones, Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys, Materials Science and Engineering A, Vol. 361, n. 1-2, pp.213-224, (2003).

DOI: 10.1016/s0921-5093(03)00528-8

Google Scholar

[44] H. Atkinson, Alloys for Semi-Solid Processing, Solid State Phenomena, Vol. 192-193, pp.16-27, (2013).

DOI: 10.4028/www.scientific.net/ssp.192-193.16

Google Scholar

[45] M. Avedesian e H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, (1999).

Google Scholar

[46] P. Kapranos, Semi-solid metal processing - A process looking for a market, Solid State Phenomena, Vol. 141-143, pp.1-8, (2008).

DOI: 10.4028/www.scientific.net/ssp.141-143.1

Google Scholar

[47] M. Robelet, A. Rassili,D. Fischer, Steel grades adapted to the thixoforging process: metallurgical structures and mechanical properties, Solid State Phenomena, Vol. 116-117, pp.712-716, (2006).

DOI: 10.4028/www.scientific.net/ssp.116-117.712

Google Scholar

[48] H. Atkinson, A. Rassili, Thixoforming steel, Aachen: Shaker Verlag, (2010).

Google Scholar

[49] M. Rosso, I. Peter, R. Villa, Effects of T5 and T6 heat treatments applied to rheocast A356 parts for automotive applications, Solid State Phenomena, Vol. 141-143, pp.237-242, (2008).

DOI: 10.4028/www.scientific.net/ssp.141-143.237

Google Scholar

[50] ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, (1990).

DOI: 10.31399/asm.hb.v02.9781627081627

Google Scholar

[51] D. Liu, H. K. P. Atkinson, H. Jones, Effect of heat treatment on properties of thixoformed high performance 2014 and 201 aluminium alloys, Journal of Materials Science, Vol. 39, n. 1, pp.99-105, (2004).

DOI: 10.1023/b:jmsc.0000007732.04363.81

Google Scholar

[52] Z. Fan, G. Liu, Y. Wang, Microstructure and mechanical properties of rheo-diecast AZ91D magnesium alloy, Journal of Materials Science, Vol. 41, n. 12, pp.3631-3644, (2006).

DOI: 10.1007/s10853-006-6248-x

Google Scholar

[53] S. Ji, M. Qian, Z. Fan, Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 37, n. 3, pp.779-787, (2006).

DOI: 10.1007/s11661-006-0049-3

Google Scholar

[54] M. Scharrer, A. Lohmüller, R. Hilbinger, H. Eibisch, R. Jenning, M. Hartmann, R. F. Singer, Advances in Magnesium Injection Molding (Thixomolding®), in Proceedings of the 7th International Conference Magnesium Alloys and Their Applications, Dresden, (2006).

DOI: 10.1002/3527603565.ch117

Google Scholar

[55] S. J. 465, Magnesium Casting Alloys Standard.

Google Scholar

[56] J. Lozares, Z. Azpilgain, I. L. I. Hurtado, Analysis of a thixo-lateral forged spindle from LTT C45, LTT C38 and LTT 100cr6 steel grades, Solid State Phenomena, Vol. 217-218, pp.347-354, (2014).

DOI: 10.4028/www.scientific.net/ssp.217-218.347

Google Scholar

[57] M. Aronov, N. Kobasko, J. Powell, Effect of Intensive Quenching on Mechanical Properties of Carbon and Alloy Steels, in Proceedings of 23rd ASM Heat Treating Conference, Pittsburgh, Pennsylvania, (2005).

Google Scholar

[58] Z. Chen, W. Mao, Z. Wu, Mechanical properties and microstructures of Al alloy tensile samples produced by serpentine channel pouring rheo-diecasting process, Trans. Nonferrous Met. Soc., Vol. 21, pp.1473-1479, (2011).

DOI: 10.1016/s1003-6326(11)60883-2

Google Scholar

[59] R. Jamaati, S. Amirkhanlou, M. Toroghinejad, B. Niroumand, Significant improvement of semi-solid microstructure and mechanical properties of A356 alloy by ARB process, Materials Science and Engineering A, Vol. 528, pp.2495-2501, (2011).

DOI: 10.1016/j.msea.2010.11.086

Google Scholar

[60] S. Shabestari, E. Parshizfard, Effect of semi-solid forming on the microstructure and mechanical properties of the iron containing Al–Si alloys, Journal of Alloys and Compounds, Vol. 509, pp.7973-7978, (2011).

DOI: 10.1016/j.jallcom.2011.05.052

Google Scholar

[61] S. Wu, S. Lu, P. An, H. Nakae, Microstructure and property of rheocasting aluminum-alloy made with indirect ultrasonic vibration process, Materials Letters, Vol. 73, pp.150-153, (2012).

DOI: 10.1016/j.matlet.2012.01.040

Google Scholar

[62] J.-W. Zhao, S. Wu, Microstructure and mechanical properties of rheo-diecasted A390 alloy, Trans. Nonferrous Met. Soc., Vol. 20, pp.754-757, (2010).

DOI: 10.1016/s1003-6326(10)60576-6

Google Scholar

[63] E. Cerri, Evangelista, S. E., C. P. S., F. Dericcardis, Effects of thermal treatments on microstructure and mechanical properties in a thixocast 319 aluminum alloy, Materials Science and Engineering A, Vol. 284, n. 1-2, pp.254-260, (2000).

DOI: 10.1016/s0921-5093(00)00748-6

Google Scholar

[64] W. Dai, S. Wu, S. Lu, C. Lin, Effects of rheo-squeeze casting parameters on microstructure and mechanical properties of AlCuMnTi alloy, Materials Science and Engineering A, Vol. 538, pp.320-326, (2012).

DOI: 10.1016/j.msea.2012.01.051

Google Scholar

[65] H. Jiang, Y. H. W. Lu, X. Li, M. Li, Microstructural evolution and mechanical properties of the semisolid Al-4Cu-Mg alloy, Materials Characterization, Vol. 51, n. 1, pp.1-10, (2003).

DOI: 10.1016/s1044-5803(03)00128-1

Google Scholar

[66] C. Xu, J. Zhao, A. Guo, H. Li, G. Dai, X. Zhang, Effects of injection velocity on microstructure, porosity and mechanical properties of a rheo-diecast Al-Zn-Mg-Cu aluminum alloy, Journal of Materials Processing Tech., Vol. 249, pp.167-171, (2017).

DOI: 10.1016/j.jmatprotec.2017.05.033

Google Scholar

[67] M. Alipour, B. Aghdam, H. Rahnoma, M. Emamy, Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process, Materials and Design, Vol. 46, pp.766-775, (2013).

DOI: 10.1016/j.matdes.2012.10.058

Google Scholar

[68] T. Haga, P. Kapranos, Simple rheocasting processes, Journal of Materials Processing Technology, Vol. 130-131, pp.594-598, (2002).

DOI: 10.1016/s0924-0136(02)00819-1

Google Scholar

[69] R. Burapa, S. Janudom, T. Chucheep, R. Canyook, J. Wannasin, Effects of primary phase morphology on mechanical properties of Al-Si-Mg-Fe alloy in semi-solid slurry casting process, Trans. Nonferrous Met. Soc., Vol. 20, pp.857-861, (2010).

DOI: 10.1016/s1003-6326(10)60595-x

Google Scholar

[70] S. Lu, S. Wu, Z. Zhu, P. An, Y. Mao, Effect of semi-solid processing on microstructure and mechanical properties of 5052 aluminum alloy, Trans. Nonferrous Met. Soc., Vol. 20, pp.758-762, (2010).

DOI: 10.1016/s1003-6326(10)60577-8

Google Scholar

[71] A. Pola, R. Roberti, F. Frerini, Microstructure and mechanical behaviour of cast aluminium components obtained by thixocasting and traditional processes, in Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004, Limassol, Cyprus, 2004, pp.843-853.

Google Scholar

[72] N. Hayat, H. Toda, T. Kobayashi, N. Wade, Experimental investigations of fatigue characteristics of AC4CH cast aluminum alloys fabricated through rheocast and squeeze cast methods, in ICAA8, Materials Science Forum, Cambridge; United Kingdom, (2002).

DOI: 10.4028/www.scientific.net/msf.396-402.1353

Google Scholar

[73] M. Blad, B. Johannesson, P. Nordberg, J. Winklhofer, Manufacturing and fatigue verification of two different components made by semi-solid processing of aluminium TX630 alloy, in Solid State Phenomena, Vol. 256, pp.328-333, (2016).

DOI: 10.4028/www.scientific.net/ssp.256.328

Google Scholar

[74] Y. Gan, R. Overfelt, Fatigue property of semisolid A357 aluminum alloy under different heat treatment conditions, Journal of Materials Science, Vol. 41, n. 22, pp.7537-7544, (2006).

DOI: 10.1007/s10853-006-0838-5

Google Scholar

[75] M. Bouazara, A. Bouaicha, K. Ragab, Fatigue Characteristics and Quality Index of A357 Type Semi-Solid Aluminum Castings Used for Automotive Application, Journal of Materials Engineering and Performance, Vol. 24 , n. 8, pp.3084-3092, (2015).

DOI: 10.1007/s11665-015-1602-2

Google Scholar

[76] M. Brochu, Y. Verreman, F. Ajersch, D. Bouchard, High cycle fatigue strength of permanent mold and rheocast aluminum 357 alloy, International Journal of Fatigue, Vol. 32, n. 8, pp.1233-1242, (2010).

DOI: 10.1016/j.ijfatigue.2010.01.001

Google Scholar

[77] M. Brochu, Y. Verreman, F. Ajersch, L. Bucher, Fatigue Behavior of Semi-Solid Cast Aluminum: A Critical Review, Solid State Phenomena, Vol. 141-143, pp.725-730, (2008).

DOI: 10.4028/www.scientific.net/ssp.141-143.725

Google Scholar

[78] C. Park, S. Kim, Y. Kwon, Y. Lee, J. Lee, Mechanical and corrosion properties of rheocast and low-pressure cast A356-T6 alloy, Materials Science and Engineering A, Vol. 391, n. 1-2, p.86–94, (2005).

DOI: 10.1016/j.msea.2004.08.056

Google Scholar

[79] Y. Yu, S. Kim, Y. Lee, J. Lee, Phenomenological Observations on Mechanical and Corrosion Properties of Thixoformed 357 Alloys: A Comparison with Permanent Mold Cast 357 Alloys, Metallurgical and material transactions A, Vol. 33A, pp.1339-1412, 2002—1399.

DOI: 10.1007/s11661-002-0064-y

Google Scholar

[80] R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez, Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution, Corrosion Science, Vol. 73, pp.342-355, (2013).

DOI: 10.1016/j.corsci.2013.04.023

Google Scholar

[81] A. Tahamtan, A. Fadavi Boostani, Quantitative analysis of pitting corrosion behavior of thixoformed A356 alloy in chloride medium using electrochemical techniques, Materials and Design , Vol. 30, n. 7, p.2483–2489, (2009).

DOI: 10.1016/j.matdes.2008.10.003

Google Scholar

[82] B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, A. Rivas, Enhanced corrosion resistance of AZ91 alloy produced by semisolid metal processing, Journal of the Electrochemical Society, Vol. 162, n. 4, pp. C180-C188, (2015).

DOI: 10.1149/2.0521504jes

Google Scholar

[83] M. Esmaily, M. Ström, J. Svensson, M. Halvarsson, L. Johansson, Corrosion behavior of alloy AM50 in semisolid cast and high-pressure die cast states in cyclic conditions, Corrosion, Vol. 71, n. 6, pp.737-748, (2015).

DOI: 10.5006/1601

Google Scholar

[84] S. Mariani, A. Da Forno, M. Bestetti, Corrosion behaviour of high pressure die- cast and semisolid cast AZ91, AM60 and AM50 alloys, Solid State Phenomena, Vol. 192-193, pp.231-237.

DOI: 10.4028/www.scientific.net/ssp.192-193.231

Google Scholar

[85] H.-Y. Xu, Z.-S. Ji, W. Z.-Y. Wang, Microstructural evolution of AZ91D-1.5%Er during semi-solid isothermal treatment, Solid State Phenomena, Vol. 192-193, pp.238-245, (2013).

DOI: 10.4028/www.scientific.net/ssp.192-193.238

Google Scholar

[86] A. Pola, R. Roberti, L. Montesano, New zinc alloys for semisolid applications, International Journal of Material Forming, Vol. 3, n. 1, pp.743-746, (2010).

DOI: 10.1007/s12289-010-0877-y

Google Scholar

[87] A. Pola, M. Gelfi, M. Modigell, R. Roberti, Semisolid lead-antimony alloys for cars batteries, Transactions of Nonferrous Metals Society of China (English Ed.), Vol. 20, n. 9, pp.1774-1779, (2010).

DOI: 10.1016/s1003-6326(09)60373-3

Google Scholar

[88] J. Bastidas, A. Forn, M. Baile, J. L. Polo, Pitting corrosion of A357 aluminium alloy, Materials and Corrosion, Vol. 52, pp.691-696, (2001).

DOI: 10.1002/1521-4176(200109)52:9<691::aid-maco691>3.0.co;2-t

Google Scholar

[89] A. Arrighini, M. Gelfi, A. Pola, R. Roberti, Effect of ultrasound treatment of AlSi5 liquid alloy on corrosion resistance, Materials and Corrosion, Vol. 61, n. 3, pp.218-221, (2010).

DOI: 10.1002/maco.200905303

Google Scholar

[90] B. Mingo, R. Arrabal, A. Pardo, E. Matykina, P. Skeldon, 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy, Materials Characterization, Vol. 112, p.122–128, (2016).

DOI: 10.1016/j.matchar.2015.12.006

Google Scholar

[91] A. Forn, E. Rupérezu, M. Baile, M. Campillo, S. Menargues, I. Espinosa, Corrosion behaviour of A380 aluminiun alloy by semi-solid rheocasting, in 10 ESAFORM Conference on Material Forming - AIP Conference Proceedings, Zaragoza, Spain, (2007).

DOI: 10.1063/1.2729671

Google Scholar

[92] A. Tahamtan, S. Tahamtan, A. Boostani, H. Nazemi, Pitting corrosion of thixoformed, rheocast and gravity cast A356-T6 alloy in chloride media, Corrosion Engineering Science and Technology, Vol. 44, n. 5, pp.384-388, (2009).

DOI: 10.1179/174327808x315678

Google Scholar

[93] E. Masuku, H. Möller, U. Curle, P. Pistorius, W. Li, Influence of surface liquid segregation on corrosion behavior of semi-solid metal high pressure die cast aluminium alloys, Transactions of Nonferrous Metals Society of China (English Edition), Vol. 20, n. 3, pp. s837-s841, (2010).

DOI: 10.1016/s1003-6326(10)60591-2

Google Scholar

[94] H. Möller, E. Masuku, The Influence of Liquid Surface Segregation on the Pitting Corrosion Behavior of SemiSolid Metal High Pressure Die Cast Alloy F357, The Open Corrosion Journal, Vol. 2, n. 1, pp.216-220, (2009).

DOI: 10.2174/1876503300902010216

Google Scholar

[95] M. Esmaily, M. Shahabi-Navid, N. Mortazavi, J. Svensson, M. Halvarsson, M. Wessén, A. Jarfors, L. Johansson, Microstructural characterization of the Mg-Al alloy AM50 produced by a newly developed rheo-casting process, Materials Characterization, Vol. 95, pp.50-64, (2014).

DOI: 10.1016/j.matchar.2014.06.001

Google Scholar

[96] M. Esmaily, N. Mortazavi, J. Svensson, M. Halvarsson, D. Blücher, A. Jarfors, M. Wessén, L. Johansson, Atmospheric corrosion of Mg alloy AZ91D fabricated by a semi-solid casting technique: The influence of microstructure, Journal of the Electrochemical Society, Vol. 162, n. 7, pp. C311-C32, (2015).

DOI: 10.1149/2.0341507jes

Google Scholar

[97] A. Pardo, M. Merino, A. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corrosion Science, Vol. 50, n. 3, pp.823-834, (2008).

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[98] A. Dey, P. Poddar, K. Singh, K. Sahoo, Mechanical and wear properties of rheocast and conventional gravity die cast A356 alloy, Materials Science and Engineering A, Vol. 435-436, pp.521-529, (2006).

DOI: 10.1016/j.msea.2006.07.148

Google Scholar

[99] M. Bayoumi, M. E.-G. A. Negm, Microstructure and mechanical properties of extruded Al-Si alloy (A356) in the semi-solid state, Materials and Design, Vol. 30, pp.4469-4477, (2009).

DOI: 10.1016/j.matdes.2008.11.025

Google Scholar

[100] A. Pola, L. Montesano, M. Gelfi, R. Roberti, Semisolid processing of Al-Sn-Cu alloys for bearing applications, in Solid State Phenomena, Vol. 192-193, pp.562-568, (2013).

DOI: 10.4028/www.scientific.net/ssp.192-193.562

Google Scholar

[101] A. Vencl, I. Bobic, Z. Miskovic, Effect of thixocasting and heat treatment on the tribological properties of hypoeutectic Al–Si alloy, Wear, Vol. 264, pp.616-623, (2008).

DOI: 10.1016/j.wear.2007.05.011

Google Scholar

[102] Y. Birol, F. Birol, Wear properties of thixoformed AlSiCuFe alloys, International Journal of Material Forming, Vol. 1, SUPPL. 1, pp.981-984, (2008).

DOI: 10.1007/s12289-008-0222-x

Google Scholar

[103] Y. Birol, F. Birol, Wear properties of high-pressure die cast and thixoformed aluminium alloys for connecting rod applications in compressors, Wear, Vol. 265, n. 5-6, pp.590-597, (2008).

DOI: 10.1016/j.wear.2007.12.004

Google Scholar

[104] K. Alhawari, M. Omar, M. Ghazali, M. Salleh, M. Mohammed, Evaluation of the microstructure and dry sliding wear behaviour of thixoformed A319 aluminium alloy, Materials and Design, Vol. 76, pp.169-180, (2015).

DOI: 10.1016/j.matdes.2015.03.057

Google Scholar

[105] K. Alhawari, M. Omar, M. Ghazali, M. Salleh, M. Mohammed, Dry sliding wear behaviour of thixoformed hypoeutectic Al-Si-Cu alloy with different amounts of magnesium, Composite Interfaces, Vol. 23, n. 6, pp.519-531, (2016).

DOI: 10.1080/09276440.2016.1164496

Google Scholar

[106] A. Pola, L. Montesano, C. Sinagra, M. Gelfi, G. La Vecchia, Effect of globular microstructure on cavitation erosion resistance of aluminium alloys, Solid State Phenomena, Vol. 256, pp.51-57, (2016).

DOI: 10.4028/www.scientific.net/ssp.256.51

Google Scholar

[107] A. Pola, L. Montesano, M. Tocci, G. La Vecchia, Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy, Materials, Vol. 10, n. 3, p.256, (2017).

DOI: 10.3390/ma10030256

Google Scholar