Correlation between Microstructure and Properties of Semi-Solid Products

Abstract:

Article Preview

Since the very first production trials, it was evident that semi-solid components exhibit excellent mechanical properties, comparable to those of forged material and, in any case, better than permanent mold castings. Over the years, these findings have been confirmed by many authors. Most of the papers available in scientific literature deals with the demonstration of this improvement, especially in order to show the reliability of new and alternative production routes. On the contrary, only some studies focus their attention on the relationship between enhanced mechanical properties and the microstructure. However, it is demonstrated that the increased performance of semi-solid components is not only due to the absence of porosity, but there is a clear relationship between microstructure and properties. This paper reports about the state of knowledge in this subject, in particular for what concerns tensile, fatigue, wear and corrosion resistance.

Info:

Periodical:

Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu

Pages:

12-23

Citation:

A. Pola, "Correlation between Microstructure and Properties of Semi-Solid Products", Solid State Phenomena, Vol. 285, pp. 12-23, 2019

Online since:

January 2019

Authors:

Export:

Price:

$41.00

* - Corresponding Author

[1] J. Koke, M. Modigell, Flow behaviour of semi-solid metal alloys, Journal of Non-Newtonian Fluid Mechanics, Vol. 112, n. 2-3, pp.141-160, (2003).

DOI: https://doi.org/10.1016/s0377-0257(03)00080-6

[2] M. Modigell, J. Koke, Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes, Journal of Materials Processing Technology, vol. 111, n. 1-3, pp.53-58,, (2001).

DOI: https://doi.org/10.1016/s0924-0136(01)00496-4

[3] M. Flemings, Behavior of metal alloys in the semisolid state, Metallurgical Transactions A, Vol. 22A, pp.957-981, (1991).

DOI: https://doi.org/10.1007/bf02661090

[4] D. Kirkwood, Semisolid metal processing, International Materials Reviews, Vol. 39, n. 5, pp.173-189, (1994).

[5] D. Spencer, R. Mehrabian, M. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range, Metallurgical Transactions, Vol. 3, n. 7, pp.1925-1932, (1972).

DOI: https://doi.org/10.1007/bf02642580

[6] J. Chen, Z. Fan, Modelling of rheological behaviour of semisolid metal slurries: Part 1 - Theory, Materials Science and Technology, Vol. 18, n. 3, pp.237-242, (2002).

DOI: https://doi.org/10.1179/026708301225000662

[7] A. Alexandrou, F. Bardinet, W. Loué, Mathematical and computational modeling of die filling in semisolid metal processing, Journal of Materials Processing Technology, Vol. 96, n. 1-3, pp.59-72, (1999).

DOI: https://doi.org/10.1016/s0924-0136(99)00316-7

[8] M. Modigell, J. Koke, Time-dependent rheological properties of semi-solid metal alloys, Mechanics Time-Dependent Materials, Vol. 3, n. 1, pp.15-30, (1999).

DOI: https://doi.org/10.1023/a:1009856708511

[9] M. Hufschmidt, M. Modigell, J. Petera, Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions, Journal of Non-Newtonian Fluid Mechanics, vol. 134 , n. 1-3 SPEC. ISS., pp.16-26, (2006).

DOI: https://doi.org/10.1016/j.jnnfm.2005.10.006

[10] A. Pola, R. Roberti, M. Modigell, L. Pape, Rheological characterization of a new alloy for thixoforming, Solid State Phenomena, Vol. 141-143, pp.301-306, (2008).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.141-143.301

[11] G. Hirt, R. Kopp, Thixoforming: Semi-solid Metal Processing, Weinheim: Wiley-VCH, Verlag GmbH & Co. KGaA,, (2008).

[12] S. Midson, Rheocasting processes for semi-solid casting of aluminum alloys, Die Casting Engineer, Vol. 50, n. 1, pp.48-51, (2006).

[13] D. Kirkwood, M. Suéry, P. Kapranos, H. Atkinson, K. Young, Semi-solid Processing of Alloys, Springer-Verlag, (2010).

[14] S. Nafisi, R. Ghomashchi, Semi-Solid Processing of Aluminum Alloys, Springer, (2016).

[15] A. Pola, M. Tocci, P. Kapranos, Microstructure and properties of semi-solid aluminum alloys: A literature review, Metals, Vol. 8, n. 3, p.181, (2018).

DOI: https://doi.org/10.3390/met8030181

[16] J. Yurko, R. Boni, Semi-solid rheocasting | [SSRTM semi-solid rheocasting], Metallurgia Italiana, vol. 98, n. 3, pp.35-4198, (2006).

[17] J. Wannasin, R. Martinez, M. Flemings, A novel technique to produce metal slurries for semi-solid metal processing, Solid State Phenomena, Vol. 116-117, pp.366-369, (2006).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.116-117.366

[18] P. Giordano, G. Chiarmetta, New rheocasting: A valid alternative to the traditional technologies for the production of automotive suspension parts, in 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004, Limassol; Cyprus, (2004).

[19] E. Cardoso, H. Atkinson, H. Jones, Microstructural evolution of A356 during NRC processing, in 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004, Limassol, Cyprus, (2004).

[20] V. Abramov, O. Abramov, B. Straumal, W. Gust, Hypereutectic Al–Si based alloys with a thixotropic microstructure produced by ultrasonic treatment, Materials and Design, Vol. 18, n. 4-6, pp.323-326, (1997).

DOI: https://doi.org/10.1016/s0261-3069(97)00072-1

[21] A. Pola, A. Arrighini, R. Roberti, Effect of ultrasounds treatment on alloys for semisolid application, Solid State Phenomena , Vol. 141-143, pp.481-486, (2008).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.141-143.481

[22] O. Granath, M. Wessén, H. Cao, Porosity reduction possibilities in commercial aluminium A380 and magnesium AM60 alloy components using the rheometal[TM] process, in 4th International Conference High tech Die Casting, Brescia, (2008).

[23] T. Haga, S. Suzuki, Casting of aluminum alloy ingots for thixoforming using a cooling slope, Journal of Materials Processing Technology, Vol. 118, n. 1-3, pp.169-172, (2001).

DOI: https://doi.org/10.1016/s0924-0136(01)00888-3

[24] M. Findon, A. de Figueredo, D. Apelian, M. Makhlouf, Melt mixing approaches for the formation of thixotropic semisolid metal structure, in 7th International Conference on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, (2002).

[25] J. Langlais, A. Lemieux, The SEED technology for semi-solid processing of aluminum alloys: A metallurgical and process overview, Solid State Phenomena, Vol. 116-117, pp.472-477, (2006).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.116-117.472

[26] F. Niedermaier, J. Langgartner, G. Hirt, I. Niedick, Horizontal continuous casting of SSM billets, in Fifth International Conference on Semi-Solid Processing of Alloys and Composites, Golden, (1998).

[27] M. Kenney, J. Courtois, R. Evans, G. Farrior, C. Kyonka, Semisolid Metal Casting and Forging, Metal Handbook, Vol. 15, Casting,, Des Plaines: ASM Publication, (2002).

[28] E. Tzimas, A. Zavaliangos, Evolution of near-equiaxed microstructure in the semisolid state, Materials Science and Engineering: A, Vol. 289, n. 1-2, pp.228-240, (2000).

DOI: https://doi.org/10.1016/s0921-5093(00)00908-4

[29] H. Atkinson, Modelling the semisolid processing of metallic alloys, Progress in Materials Science, Vol. 50, pp.341-412, (2005).

DOI: https://doi.org/10.1016/j.pmatsci.2004.04.003

[30] M. Mohammed, M. Omar, M. Salleh, K. Alhawari, P. Kapranos, Semisolid metal processing techniques for nondendritic feedstock production, The Scientific World Journal, n. 752175, (2013).

DOI: https://doi.org/10.1155/2013/752175

[31] S. Nafisi, R. Ghomashchi, Semi-solid metal processing routes: An overview, Canadian Metallurgical Quarterly, Vol. 44, n. 3, pp.289-304, (2005).

DOI: https://doi.org/10.1179/000844305794409337

[32] Z. Fan, Semisolid metal processing, International Materials Reviews, Vol. 47, n. 2, pp.49-86, (2002).

[33] A. Vogel, R. Doherty, B. Cantor, Stir-cast microstructure and slow crack growth, in Solidification and Casting of Metals: Proceedings of an International Conference on Solidification, London - UK, (1979).

[34] R. Doherty, H.-I. Lee, E. Feest, Microstructure of stir-cast metals, Materials Science and Engineering, Vol. 65, n. 1, pp.181-189, (1984).

DOI: https://doi.org/10.1016/0025-5416(84)90211-8

[35] W. Loué, M. Suéry, Microstructural evolution during partial remelting of Al-Si7Mg alloys, Materials Science and Engineering A, Vol. 203, pp.1-13, (1995).

DOI: https://doi.org/10.1016/0921-5093(95)09861-5

[36] J. Molenaar, L. Katgerman, W. Kool, R. Smeulders, On the formation of the stircast structure, Journal of materials science, Vol. 21, pp.389-394, (1986).

DOI: https://doi.org/10.1007/bf01145499

[37] A. Hellawell, Grain evoluation in conventional rheocasting, in 4th International Conference on Semi-Solid Processing of Alloys and Composites, Sheffield - UK, (1996).

[38] J. Campbell, Casting, Ch. 9, Oxford: Butterworth-Heinemann, (2003).

[39] P. Kapranos, T. Haga, E. Bertoli, A. Pola, Z. Azpilgain, I. Hurtado, Thixo-extrusion of 5182 aluminium alloy, Solid State Phenomena, Vol. 141-143, pp.115-120, (2008).

DOI: https://doi.org/10.4028/3-908451-59-0.115

[40] D. Apelian, Semi-Solid Processing Routes and Microstructure Evolution, in Proceedings of the Seventh International Conference titled Advanced Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, (2002).

[41] Ł. Rogal, Critical assessment: opportunities in developing semi-solid processing: aluminium, magnesium, and high-temperature alloys, Materials Science and Technology , Vol. 33, n. 7, pp.759-764, (2017).

DOI: https://doi.org/10.1080/02670836.2017.1295212

[42] A. Kazakov, Alloy compositions for semisolid forming, Advanced Materials and Processes, Vol. 157, n. 3, pp.31-34, (2000).

[43] D. Liu, H. Atkinson, P. Kapranos, W. Jirattiticharoean e H. Jones, Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys, Materials Science and Engineering A, Vol. 361, n. 1-2, pp.213-224, (2003).

DOI: https://doi.org/10.1016/s0921-5093(03)00528-8

[44] H. Atkinson, Alloys for Semi-Solid Processing, Solid State Phenomena, Vol. 192-193, pp.16-27, (2013).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.192-193.16

[45] M. Avedesian e H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, (1999).

[46] P. Kapranos, Semi-solid metal processing - A process looking for a market, Solid State Phenomena, Vol. 141-143, pp.1-8, (2008).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.141-143.1

[47] M. Robelet, A. Rassili,D. Fischer, Steel grades adapted to the thixoforging process: metallurgical structures and mechanical properties, Solid State Phenomena, Vol. 116-117, pp.712-716, (2006).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.116-117.712

[48] H. Atkinson, A. Rassili, Thixoforming steel, Aachen: Shaker Verlag, (2010).

[49] M. Rosso, I. Peter, R. Villa, Effects of T5 and T6 heat treatments applied to rheocast A356 parts for automotive applications, Solid State Phenomena, Vol. 141-143, pp.237-242, (2008).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.141-143.237

[50] ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, (1990).

[51] D. Liu, H. K. P. Atkinson, H. Jones, Effect of heat treatment on properties of thixoformed high performance 2014 and 201 aluminium alloys, Journal of Materials Science, Vol. 39, n. 1, pp.99-105, (2004).

DOI: https://doi.org/10.1023/b:jmsc.0000007732.04363.81

[52] Z. Fan, G. Liu, Y. Wang, Microstructure and mechanical properties of rheo-diecast AZ91D magnesium alloy, Journal of Materials Science, Vol. 41, n. 12, pp.3631-3644, (2006).

DOI: https://doi.org/10.1007/s10853-006-6248-x

[53] S. Ji, M. Qian, Z. Fan, Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 37, n. 3, pp.779-787, (2006).

DOI: https://doi.org/10.1007/s11661-006-0049-3

[54] M. Scharrer, A. Lohmüller, R. Hilbinger, H. Eibisch, R. Jenning, M. Hartmann, R. F. Singer, Advances in Magnesium Injection Molding (Thixomolding®), in Proceedings of the 7th International Conference Magnesium Alloys and Their Applications, Dresden, (2006).

DOI: https://doi.org/10.1002/3527603565.ch117

[55] S. J. 465, Magnesium Casting Alloys Standard.

[56] J. Lozares, Z. Azpilgain, I. L. I. Hurtado, Analysis of a thixo-lateral forged spindle from LTT C45, LTT C38 and LTT 100cr6 steel grades, Solid State Phenomena, Vol. 217-218, pp.347-354, (2014).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.217-218.347

[57] M. Aronov, N. Kobasko, J. Powell, Effect of Intensive Quenching on Mechanical Properties of Carbon and Alloy Steels, in Proceedings of 23rd ASM Heat Treating Conference, Pittsburgh, Pennsylvania, (2005).

[58] Z. Chen, W. Mao, Z. Wu, Mechanical properties and microstructures of Al alloy tensile samples produced by serpentine channel pouring rheo-diecasting process, Trans. Nonferrous Met. Soc., Vol. 21, pp.1473-1479, (2011).

DOI: https://doi.org/10.1016/s1003-6326(11)60883-2

[59] R. Jamaati, S. Amirkhanlou, M. Toroghinejad, B. Niroumand, Significant improvement of semi-solid microstructure and mechanical properties of A356 alloy by ARB process, Materials Science and Engineering A, Vol. 528, pp.2495-2501, (2011).

DOI: https://doi.org/10.1016/j.msea.2010.11.086

[60] S. Shabestari, E. Parshizfard, Effect of semi-solid forming on the microstructure and mechanical properties of the iron containing Al–Si alloys, Journal of Alloys and Compounds, Vol. 509, pp.7973-7978, (2011).

DOI: https://doi.org/10.1016/j.jallcom.2011.05.052

[61] S. Wu, S. Lu, P. An, H. Nakae, Microstructure and property of rheocasting aluminum-alloy made with indirect ultrasonic vibration process, Materials Letters, Vol. 73, pp.150-153, (2012).

DOI: https://doi.org/10.1016/j.matlet.2012.01.040

[62] J.-W. Zhao, S. Wu, Microstructure and mechanical properties of rheo-diecasted A390 alloy, Trans. Nonferrous Met. Soc., Vol. 20, pp.754-757, (2010).

DOI: https://doi.org/10.1016/s1003-6326(10)60576-6

[63] E. Cerri, Evangelista, S. E., C. P. S., F. Dericcardis, Effects of thermal treatments on microstructure and mechanical properties in a thixocast 319 aluminum alloy, Materials Science and Engineering A, Vol. 284, n. 1-2, pp.254-260, (2000).

DOI: https://doi.org/10.1016/s0921-5093(00)00748-6

[64] W. Dai, S. Wu, S. Lu, C. Lin, Effects of rheo-squeeze casting parameters on microstructure and mechanical properties of AlCuMnTi alloy, Materials Science and Engineering A, Vol. 538, pp.320-326, (2012).

DOI: https://doi.org/10.1016/j.msea.2012.01.051

[65] H. Jiang, Y. H. W. Lu, X. Li, M. Li, Microstructural evolution and mechanical properties of the semisolid Al-4Cu-Mg alloy, Materials Characterization, Vol. 51, n. 1, pp.1-10, (2003).

DOI: https://doi.org/10.1016/s1044-5803(03)00128-1

[66] C. Xu, J. Zhao, A. Guo, H. Li, G. Dai, X. Zhang, Effects of injection velocity on microstructure, porosity and mechanical properties of a rheo-diecast Al-Zn-Mg-Cu aluminum alloy, Journal of Materials Processing Tech., Vol. 249, pp.167-171, (2017).

DOI: https://doi.org/10.1016/j.jmatprotec.2017.05.033

[67] M. Alipour, B. Aghdam, H. Rahnoma, M. Emamy, Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process, Materials and Design, Vol. 46, pp.766-775, (2013).

DOI: https://doi.org/10.1016/j.matdes.2012.10.058

[68] T. Haga, P. Kapranos, Simple rheocasting processes, Journal of Materials Processing Technology, Vol. 130-131, pp.594-598, (2002).

DOI: https://doi.org/10.1016/s0924-0136(02)00819-1

[69] R. Burapa, S. Janudom, T. Chucheep, R. Canyook, J. Wannasin, Effects of primary phase morphology on mechanical properties of Al-Si-Mg-Fe alloy in semi-solid slurry casting process, Trans. Nonferrous Met. Soc., Vol. 20, pp.857-861, (2010).

DOI: https://doi.org/10.1016/s1003-6326(10)60595-x

[70] S. Lu, S. Wu, Z. Zhu, P. An, Y. Mao, Effect of semi-solid processing on microstructure and mechanical properties of 5052 aluminum alloy, Trans. Nonferrous Met. Soc., Vol. 20, pp.758-762, (2010).

[71] A. Pola, R. Roberti, F. Frerini, Microstructure and mechanical behaviour of cast aluminium components obtained by thixocasting and traditional processes, in Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004, Limassol, Cyprus, 2004, pp.843-853.

[72] N. Hayat, H. Toda, T. Kobayashi, N. Wade, Experimental investigations of fatigue characteristics of AC4CH cast aluminum alloys fabricated through rheocast and squeeze cast methods, in ICAA8, Materials Science Forum, Cambridge; United Kingdom, (2002).

DOI: https://doi.org/10.4028/www.scientific.net/msf.396-402.1353

[73] M. Blad, B. Johannesson, P. Nordberg, J. Winklhofer, Manufacturing and fatigue verification of two different components made by semi-solid processing of aluminium TX630 alloy, in Solid State Phenomena, Vol. 256, pp.328-333, (2016).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.256.328

[74] Y. Gan, R. Overfelt, Fatigue property of semisolid A357 aluminum alloy under different heat treatment conditions, Journal of Materials Science, Vol. 41, n. 22, pp.7537-7544, (2006).

DOI: https://doi.org/10.1007/s10853-006-0838-5

[75] M. Bouazara, A. Bouaicha, K. Ragab, Fatigue Characteristics and Quality Index of A357 Type Semi-Solid Aluminum Castings Used for Automotive Application, Journal of Materials Engineering and Performance, Vol. 24 , n. 8, pp.3084-3092, (2015).

DOI: https://doi.org/10.1007/s11665-015-1602-2

[76] M. Brochu, Y. Verreman, F. Ajersch, D. Bouchard, High cycle fatigue strength of permanent mold and rheocast aluminum 357 alloy, International Journal of Fatigue, Vol. 32, n. 8, pp.1233-1242, (2010).

DOI: https://doi.org/10.1016/j.ijfatigue.2010.01.001

[77] M. Brochu, Y. Verreman, F. Ajersch, L. Bucher, Fatigue Behavior of Semi-Solid Cast Aluminum: A Critical Review, Solid State Phenomena, Vol. 141-143, pp.725-730, (2008).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.141-143.725

[78] C. Park, S. Kim, Y. Kwon, Y. Lee, J. Lee, Mechanical and corrosion properties of rheocast and low-pressure cast A356-T6 alloy, Materials Science and Engineering A, Vol. 391, n. 1-2, p.86–94, (2005).

DOI: https://doi.org/10.1016/j.msea.2004.08.056

[79] Y. Yu, S. Kim, Y. Lee, J. Lee, Phenomenological Observations on Mechanical and Corrosion Properties of Thixoformed 357 Alloys: A Comparison with Permanent Mold Cast 357 Alloys, Metallurgical and material transactions A, Vol. 33A, pp.1339-1412, 2002—1399.

DOI: https://doi.org/10.1007/s11661-002-0064-y

[80] R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez, Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution, Corrosion Science, Vol. 73, pp.342-355, (2013).

DOI: https://doi.org/10.1016/j.corsci.2013.04.023

[81] A. Tahamtan, A. Fadavi Boostani, Quantitative analysis of pitting corrosion behavior of thixoformed A356 alloy in chloride medium using electrochemical techniques, Materials and Design , Vol. 30, n. 7, p.2483–2489, (2009).

DOI: https://doi.org/10.1016/j.matdes.2008.10.003

[82] B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, A. Rivas, Enhanced corrosion resistance of AZ91 alloy produced by semisolid metal processing, Journal of the Electrochemical Society, Vol. 162, n. 4, pp. C180-C188, (2015).

DOI: https://doi.org/10.1149/2.0521504jes

[83] M. Esmaily, M. Ström, J. Svensson, M. Halvarsson, L. Johansson, Corrosion behavior of alloy AM50 in semisolid cast and high-pressure die cast states in cyclic conditions, Corrosion, Vol. 71, n. 6, pp.737-748, (2015).

DOI: https://doi.org/10.5006/1601

[84] S. Mariani, A. Da Forno, M. Bestetti, Corrosion behaviour of high pressure die- cast and semisolid cast AZ91, AM60 and AM50 alloys, Solid State Phenomena, Vol. 192-193, pp.231-237.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.192-193.231

[85] H.-Y. Xu, Z.-S. Ji, W. Z.-Y. Wang, Microstructural evolution of AZ91D-1.5%Er during semi-solid isothermal treatment, Solid State Phenomena, Vol. 192-193, pp.238-245, (2013).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.192-193.238

[86] A. Pola, R. Roberti, L. Montesano, New zinc alloys for semisolid applications, International Journal of Material Forming, Vol. 3, n. 1, pp.743-746, (2010).

DOI: https://doi.org/10.1007/s12289-010-0877-y

[87] A. Pola, M. Gelfi, M. Modigell, R. Roberti, Semisolid lead-antimony alloys for cars batteries, Transactions of Nonferrous Metals Society of China (English Ed.), Vol. 20, n. 9, pp.1774-1779, (2010).

DOI: https://doi.org/10.1016/s1003-6326(09)60373-3

[88] J. Bastidas, A. Forn, M. Baile, J. L. Polo, Pitting corrosion of A357 aluminium alloy, Materials and Corrosion, Vol. 52, pp.691-696, (2001).

DOI: https://doi.org/10.1002/1521-4176(200109)52:9<691::aid-maco691>3.0.co;2-t

[89] A. Arrighini, M. Gelfi, A. Pola, R. Roberti, Effect of ultrasound treatment of AlSi5 liquid alloy on corrosion resistance, Materials and Corrosion, Vol. 61, n. 3, pp.218-221, (2010).

DOI: https://doi.org/10.1002/maco.200905303

[90] B. Mingo, R. Arrabal, A. Pardo, E. Matykina, P. Skeldon, 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy, Materials Characterization, Vol. 112, p.122–128, (2016).

DOI: https://doi.org/10.1016/j.matchar.2015.12.006

[91] A. Forn, E. Rupérezu, M. Baile, M. Campillo, S. Menargues, I. Espinosa, Corrosion behaviour of A380 aluminiun alloy by semi-solid rheocasting, in 10 ESAFORM Conference on Material Forming - AIP Conference Proceedings, Zaragoza, Spain, (2007).

DOI: https://doi.org/10.1063/1.2729671

[92] A. Tahamtan, S. Tahamtan, A. Boostani, H. Nazemi, Pitting corrosion of thixoformed, rheocast and gravity cast A356-T6 alloy in chloride media, Corrosion Engineering Science and Technology, Vol. 44, n. 5, pp.384-388, (2009).

DOI: https://doi.org/10.1179/174327808x315678

[93] E. Masuku, H. Möller, U. Curle, P. Pistorius, W. Li, Influence of surface liquid segregation on corrosion behavior of semi-solid metal high pressure die cast aluminium alloys, Transactions of Nonferrous Metals Society of China (English Edition), Vol. 20, n. 3, pp. s837-s841, (2010).

DOI: https://doi.org/10.1016/s1003-6326(10)60591-2

[94] H. Möller, E. Masuku, The Influence of Liquid Surface Segregation on the Pitting Corrosion Behavior of SemiSolid Metal High Pressure Die Cast Alloy F357, The Open Corrosion Journal, Vol. 2, n. 1, pp.216-220, (2009).

DOI: https://doi.org/10.2174/1876503300902010216

[95] M. Esmaily, M. Shahabi-Navid, N. Mortazavi, J. Svensson, M. Halvarsson, M. Wessén, A. Jarfors, L. Johansson, Microstructural characterization of the Mg-Al alloy AM50 produced by a newly developed rheo-casting process, Materials Characterization, Vol. 95, pp.50-64, (2014).

DOI: https://doi.org/10.1016/j.matchar.2014.06.001

[96] M. Esmaily, N. Mortazavi, J. Svensson, M. Halvarsson, D. Blücher, A. Jarfors, M. Wessén, L. Johansson, Atmospheric corrosion of Mg alloy AZ91D fabricated by a semi-solid casting technique: The influence of microstructure, Journal of the Electrochemical Society, Vol. 162, n. 7, pp. C311-C32, (2015).

DOI: https://doi.org/10.1149/2.0341507jes

[97] A. Pardo, M. Merino, A. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corrosion Science, Vol. 50, n. 3, pp.823-834, (2008).

DOI: https://doi.org/10.1016/j.corsci.2007.11.005

[98] A. Dey, P. Poddar, K. Singh, K. Sahoo, Mechanical and wear properties of rheocast and conventional gravity die cast A356 alloy, Materials Science and Engineering A, Vol. 435-436, pp.521-529, (2006).

DOI: https://doi.org/10.1016/j.msea.2006.07.148

[99] M. Bayoumi, M. E.-G. A. Negm, Microstructure and mechanical properties of extruded Al-Si alloy (A356) in the semi-solid state, Materials and Design, Vol. 30, pp.4469-4477, (2009).

DOI: https://doi.org/10.1016/j.matdes.2008.11.025

[100] A. Pola, L. Montesano, M. Gelfi, R. Roberti, Semisolid processing of Al-Sn-Cu alloys for bearing applications, in Solid State Phenomena, Vol. 192-193, pp.562-568, (2013).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.192-193.562

[101] A. Vencl, I. Bobic, Z. Miskovic, Effect of thixocasting and heat treatment on the tribological properties of hypoeutectic Al–Si alloy, Wear, Vol. 264, pp.616-623, (2008).

DOI: https://doi.org/10.1016/j.wear.2007.05.011

[102] Y. Birol, F. Birol, Wear properties of thixoformed AlSiCuFe alloys, International Journal of Material Forming, Vol. 1, SUPPL. 1, pp.981-984, (2008).

DOI: https://doi.org/10.1007/s12289-008-0222-x

[103] Y. Birol, F. Birol, Wear properties of high-pressure die cast and thixoformed aluminium alloys for connecting rod applications in compressors, Wear, Vol. 265, n. 5-6, pp.590-597, (2008).

DOI: https://doi.org/10.1016/j.wear.2007.12.004

[104] K. Alhawari, M. Omar, M. Ghazali, M. Salleh, M. Mohammed, Evaluation of the microstructure and dry sliding wear behaviour of thixoformed A319 aluminium alloy, Materials and Design, Vol. 76, pp.169-180, (2015).

DOI: https://doi.org/10.1016/j.matdes.2015.03.057

[105] K. Alhawari, M. Omar, M. Ghazali, M. Salleh, M. Mohammed, Dry sliding wear behaviour of thixoformed hypoeutectic Al-Si-Cu alloy with different amounts of magnesium, Composite Interfaces, Vol. 23, n. 6, pp.519-531, (2016).

DOI: https://doi.org/10.1080/09276440.2016.1164496

[106] A. Pola, L. Montesano, C. Sinagra, M. Gelfi, G. La Vecchia, Effect of globular microstructure on cavitation erosion resistance of aluminium alloys, Solid State Phenomena, Vol. 256, pp.51-57, (2016).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.256.51

[107] A. Pola, L. Montesano, M. Tocci, G. La Vecchia, Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy, Materials, Vol. 10, n. 3, p.256, (2017).

DOI: https://doi.org/10.3390/ma10030256