Influence of Pressure on Polaron Energy in a Wurtzite GaN/AlxGa1-xN Quantum Well

Article Preview

Abstract:

The influence of hydrostatic pressure on the polaron energy level in wurtzite GaN/AlxGa1-xN quantum well is studied by a Lee-Low-Pines variational method, and the numerical results of the ground state energy, transition energy and contributions of different phonons to polaron energy (polaron effects) are given as functions of pressure p and composition x. The results show that the ground state energy and transition energy in the wurtzite GaN/AlxGa1-xN quantum well decrease with the increase of the hydrostatic pressure p, and increase with the increase of the composition x. The contributions of different phonons to polaron energy with pressure p and composition x are obviously different. With the increase of hydrostatic pressure, the contribution of half-space phonon, confined phonon and the total contribution of phonons of all branches increases obviously, while the contribution of interface phonon slowly increases. During the increase of the composition, the contribution of interface phonon decreases and the contribution of half-space phonon increases slowly, while the contribution of confined phonon and the total contribution of phonons increases significantly. In general, the electron-optical phonon interaction play an important role in electronic states of GaN/AlxGa1-xN quantum wells and can not be neglected.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

17-26

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Karch, J. M.Wagner, F. Bechstedt. Ab initio study of structural, dielectric, and dynamical properties of GaN. Phys. Rev. B, 57 (1998) 7043-4049.

DOI: 10.1103/physrevb.57.7043

Google Scholar

[2] J. D. Perkins, A. Mascarenhas, Y. Zhang, et al. Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs1− x Nx with x< 0.03. Phys. Rev. Lett. 82 (1999) 3312-3315.

Google Scholar

[3] K. Nomura, H. Ohta, K. Ueda, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300 (2003) 1269-1272.

DOI: 10.1126/science.1083212

Google Scholar

[4] U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301-1- 041301-103.

Google Scholar

[5] K. Akita, T. Kyono, Y. Yoshizumi, et al. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates. J. Appl. Phys. 101 (2007) 033104-1 - 033104-5.

DOI: 10.1063/1.2432307

Google Scholar

[6] K. C. Shen, C. Y. Chen, H. L. Chen, et al. Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Appl. Phys. Lett. 93 (2008) 231111-1 - 231111-3.

DOI: 10.1063/1.3046099

Google Scholar

[7] F. A. Ponce, D. P. Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386 (1997) 351-359.

DOI: 10.1038/386351a0

Google Scholar

[8] H. Zhao, N. Tansu. Optical gain characteristics of staggered InGaN quantum wells lasers. J. Appl. Phys. 107 (2010) 113110-1 - 113110-12.

DOI: 10.1063/1.3407564

Google Scholar

[9] W. Lee, M. H. Kim, D. Zhu. Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes. J. Appl. Phys. 107 (2010) 063102-1 - 063102-6.

DOI: 10.1063/1.3327425

Google Scholar

[10] J. J. Wierer Jr, A. J. Fischer, D. D. Koleske. he impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices. Appl. Phys. Lett. 96 (2010) 051107-1 - 051107-3.

DOI: 10.1063/1.3301262

Google Scholar

[11] A. Belabbes, L. C. de Carvalho, A. Schleife, et al. Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B 84 (2011 ) 125108-1 - 125108-9.

DOI: 10.1103/physrevb.84.125108

Google Scholar

[12] Z. H. Zhang, Y. H. Zhang, W. G. Bi, et al. A charge inverter for III-nitride light-emitting diodes. Appl. Phys. Lett. 108 (2016) 151105-1 - 151105-5.

DOI: 10.1063/1.4947025

Google Scholar

[13] O. Joachim Piprek. Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes. Appl. Phys. Lett. 109 (2016) 021104-1 - 021104-4.

DOI: 10.1063/1.4958619

Google Scholar

[14] X. Y. Yi, H. Q. Sun, J. Sun, et al. High efficiency improvements in AlGaN-based ultraviolet light-emitting diodes with specially designed AlGaN superlattice hole and electron blocking layers. Superlatt. Microstruct. 104 (2017) 19-23.

DOI: 10.1016/j.spmi.2017.01.042

Google Scholar

[15] D. F. Liu, D. H. Lin, G. H. Huang, et al. treaming transport of two dimensional electron gas in AlGaN/GaN/AlGaN double heterostructures. Superlatt. Microstruct. 112 (2017) 57-63.

DOI: 10.1016/j.spmi.2017.09.011

Google Scholar

[16] Dipankar Jana, T. K. Sharma. A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures. J. Appl. Phys. 122 (2017) 035101-1 - 035101-9.

DOI: 10.1063/1.4993903

Google Scholar

[17] L. Lu, Z. Wan, F. J. Xu, et al. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via asymmetric step-like AlGaN quantum wells. Superlatt. Microstruct. 104 (2017) 240-246.

DOI: 10.1016/j.spmi.2017.02.035

Google Scholar

[18] B. C. Lee, K. W. Kim, M. A. Stroscio, et al. Optical-phonon confinement and scattering in wurtzite heterostructures. Phys. Rev. B 58 (1998) 4860-4865.

DOI: 10.1103/physrevb.58.4860

Google Scholar

[19] J. J. Shi. Interface optical-phonon modes and electron–interface-phonon interactions in wurtzite GaN/AlN quantum wells. Phys. Rev. B 68 (2003) 165335-1 - 165335-11.

DOI: 10.1103/physrevb.68.165335

Google Scholar

[20] L. Li, D. Liu, J. J. Shi. Electron quasi-confined-optical-phonon interactions in wurtzite GaN/AlN quantum wells. Eur. Phys. J. B 44 (2005) 401-413.

DOI: 10.1140/epjb/e2005-00139-x

Google Scholar

[21] S. H. Ha, S. L. Ban. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys.: Condens. Matter 20 (2008) 085218-1 - 085218-7.

DOI: 10.1088/0953-8984/20/8/085218

Google Scholar

[22] D. Z. Y. Ting, Y. C. Chang, Γ-X mixing in GaAs/AlxGa1− xAs and AlxGa1− xAs/AlAs superlattices . Phys. Rev. B 36 (1987) 4359-4374.

DOI: 10.12681/eadd/7439

Google Scholar

[23] A. R. Goni, K. Syassen, M. Cardona. Cardona M. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev. B 41(1990) 10104-10110.

DOI: 10.1103/physrevb.41.10104

Google Scholar

[24] J. M. Wagner, F. Bechstedt. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66 (2002) 115202-1 - 115202-20.

DOI: 10.1103/physrevb.66.115202

Google Scholar

[25] S. Adachi. GaAs, AlAs, and AlxGa1− xAs: Material parameters for use in research and device applications. J. Appl. Phys. 58 (1985) R1-R29.

Google Scholar

[26] N. Eseanu. Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Phys. Lett. A 374 (2010) 1278-1285.

DOI: 10.1016/j.physleta.2009.12.079

Google Scholar

[27] F. Yun, M. A. Reshchikov, L. He, et al. Energy band bowing parameter in AlxGa1− xN alloys. J. Appl. Phys. 92 (2002) 4837-4839.

DOI: 10.1063/1.1508420

Google Scholar

[28] W. R. L. Lambrecht, K. Kim, S. N. Rashkeev, et al. Electronic and optical properties of the group-III nitrides, their heterostructures and alloys. Mater. Res. Soc. Symp. Proc. 395 (1996) 455-455.

DOI: 10.1557/proc-395-455

Google Scholar

[29] P. Perlin, I. Gorczyca, N. E. Christensen, et al. Pressure studies of gallium nitride: Crystal growth and fundamental electronic properties. Phys. Rev. B 45 (1992) 13307-13313.

DOI: 10.1103/physrevb.45.13307

Google Scholar

[30] T. Azuhata, T. Sota, K.Suzuki, et al. Polarized raman spectra in GaN. J. Phys.: Condens. Matter 7 (1995) L129-L133.

DOI: 10.1088/0953-8984/7/10/002

Google Scholar

[31] J. M. Wagner, F. Bechstedt. Pressure dependence of the dielectric and lattice-dynamical properties of GaN and AlN. Phys. Rev. B 62 (2000) 4526-4534.

DOI: 10.1103/physrevb.62.4526

Google Scholar

[32] H. Wang, G. A. Farias, V. N. Freire. Interface-related exciton-energy blueshift in G aN/A lxGa1− xN zinc-blende and wurtzite single quantum wells. Phys. Rev. B 60 (1999) 5705-5713.

Google Scholar

[33] S. H. Wei, A. Zunger. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Phys. Rev. B 60 (1991) 5404-5411.

DOI: 10.1103/physrevb.60.5404

Google Scholar

[34] I. Vurgaftman, J. R. Meyer. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94 (2003) 3675-3696.

DOI: 10.1063/1.1600519

Google Scholar

[35] P. Perlin, A. Polian. Raman-scattering studies of aluminum nitride at high pressure. T. Suski, Phys. Rev. B 47 (1993) 2874-2877.

DOI: 10.1103/physrevb.47.2874

Google Scholar