[1]
K. Karch, J. M.Wagner, F. Bechstedt. Ab initio study of structural, dielectric, and dynamical properties of GaN. Phys. Rev. B, 57 (1998) 7043-4049.
DOI: 10.1103/physrevb.57.7043
Google Scholar
[2]
J. D. Perkins, A. Mascarenhas, Y. Zhang, et al. Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs1− x Nx with x< 0.03. Phys. Rev. Lett. 82 (1999) 3312-3315.
Google Scholar
[3]
K. Nomura, H. Ohta, K. Ueda, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300 (2003) 1269-1272.
DOI: 10.1126/science.1083212
Google Scholar
[4]
U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301-1- 041301-103.
Google Scholar
[5]
K. Akita, T. Kyono, Y. Yoshizumi, et al. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates. J. Appl. Phys. 101 (2007) 033104-1 - 033104-5.
DOI: 10.1063/1.2432307
Google Scholar
[6]
K. C. Shen, C. Y. Chen, H. L. Chen, et al. Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Appl. Phys. Lett. 93 (2008) 231111-1 - 231111-3.
DOI: 10.1063/1.3046099
Google Scholar
[7]
F. A. Ponce, D. P. Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386 (1997) 351-359.
DOI: 10.1038/386351a0
Google Scholar
[8]
H. Zhao, N. Tansu. Optical gain characteristics of staggered InGaN quantum wells lasers. J. Appl. Phys. 107 (2010) 113110-1 - 113110-12.
DOI: 10.1063/1.3407564
Google Scholar
[9]
W. Lee, M. H. Kim, D. Zhu. Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes. J. Appl. Phys. 107 (2010) 063102-1 - 063102-6.
DOI: 10.1063/1.3327425
Google Scholar
[10]
J. J. Wierer Jr, A. J. Fischer, D. D. Koleske. he impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices. Appl. Phys. Lett. 96 (2010) 051107-1 - 051107-3.
DOI: 10.1063/1.3301262
Google Scholar
[11]
A. Belabbes, L. C. de Carvalho, A. Schleife, et al. Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B 84 (2011 ) 125108-1 - 125108-9.
DOI: 10.1103/physrevb.84.125108
Google Scholar
[12]
Z. H. Zhang, Y. H. Zhang, W. G. Bi, et al. A charge inverter for III-nitride light-emitting diodes. Appl. Phys. Lett. 108 (2016) 151105-1 - 151105-5.
DOI: 10.1063/1.4947025
Google Scholar
[13]
O. Joachim Piprek. Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes. Appl. Phys. Lett. 109 (2016) 021104-1 - 021104-4.
DOI: 10.1063/1.4958619
Google Scholar
[14]
X. Y. Yi, H. Q. Sun, J. Sun, et al. High efficiency improvements in AlGaN-based ultraviolet light-emitting diodes with specially designed AlGaN superlattice hole and electron blocking layers. Superlatt. Microstruct. 104 (2017) 19-23.
DOI: 10.1016/j.spmi.2017.01.042
Google Scholar
[15]
D. F. Liu, D. H. Lin, G. H. Huang, et al. treaming transport of two dimensional electron gas in AlGaN/GaN/AlGaN double heterostructures. Superlatt. Microstruct. 112 (2017) 57-63.
DOI: 10.1016/j.spmi.2017.09.011
Google Scholar
[16]
Dipankar Jana, T. K. Sharma. A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures. J. Appl. Phys. 122 (2017) 035101-1 - 035101-9.
DOI: 10.1063/1.4993903
Google Scholar
[17]
L. Lu, Z. Wan, F. J. Xu, et al. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via asymmetric step-like AlGaN quantum wells. Superlatt. Microstruct. 104 (2017) 240-246.
DOI: 10.1016/j.spmi.2017.02.035
Google Scholar
[18]
B. C. Lee, K. W. Kim, M. A. Stroscio, et al. Optical-phonon confinement and scattering in wurtzite heterostructures. Phys. Rev. B 58 (1998) 4860-4865.
DOI: 10.1103/physrevb.58.4860
Google Scholar
[19]
J. J. Shi. Interface optical-phonon modes and electron–interface-phonon interactions in wurtzite GaN/AlN quantum wells. Phys. Rev. B 68 (2003) 165335-1 - 165335-11.
DOI: 10.1103/physrevb.68.165335
Google Scholar
[20]
L. Li, D. Liu, J. J. Shi. Electron quasi-confined-optical-phonon interactions in wurtzite GaN/AlN quantum wells. Eur. Phys. J. B 44 (2005) 401-413.
DOI: 10.1140/epjb/e2005-00139-x
Google Scholar
[21]
S. H. Ha, S. L. Ban. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys.: Condens. Matter 20 (2008) 085218-1 - 085218-7.
DOI: 10.1088/0953-8984/20/8/085218
Google Scholar
[22]
D. Z. Y. Ting, Y. C. Chang, Γ-X mixing in GaAs/AlxGa1− xAs and AlxGa1− xAs/AlAs superlattices . Phys. Rev. B 36 (1987) 4359-4374.
DOI: 10.12681/eadd/7439
Google Scholar
[23]
A. R. Goni, K. Syassen, M. Cardona. Cardona M. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev. B 41(1990) 10104-10110.
DOI: 10.1103/physrevb.41.10104
Google Scholar
[24]
J. M. Wagner, F. Bechstedt. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66 (2002) 115202-1 - 115202-20.
DOI: 10.1103/physrevb.66.115202
Google Scholar
[25]
S. Adachi. GaAs, AlAs, and AlxGa1− xAs: Material parameters for use in research and device applications. J. Appl. Phys. 58 (1985) R1-R29.
Google Scholar
[26]
N. Eseanu. Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Phys. Lett. A 374 (2010) 1278-1285.
DOI: 10.1016/j.physleta.2009.12.079
Google Scholar
[27]
F. Yun, M. A. Reshchikov, L. He, et al. Energy band bowing parameter in AlxGa1− xN alloys. J. Appl. Phys. 92 (2002) 4837-4839.
DOI: 10.1063/1.1508420
Google Scholar
[28]
W. R. L. Lambrecht, K. Kim, S. N. Rashkeev, et al. Electronic and optical properties of the group-III nitrides, their heterostructures and alloys. Mater. Res. Soc. Symp. Proc. 395 (1996) 455-455.
DOI: 10.1557/proc-395-455
Google Scholar
[29]
P. Perlin, I. Gorczyca, N. E. Christensen, et al. Pressure studies of gallium nitride: Crystal growth and fundamental electronic properties. Phys. Rev. B 45 (1992) 13307-13313.
DOI: 10.1103/physrevb.45.13307
Google Scholar
[30]
T. Azuhata, T. Sota, K.Suzuki, et al. Polarized raman spectra in GaN. J. Phys.: Condens. Matter 7 (1995) L129-L133.
DOI: 10.1088/0953-8984/7/10/002
Google Scholar
[31]
J. M. Wagner, F. Bechstedt. Pressure dependence of the dielectric and lattice-dynamical properties of GaN and AlN. Phys. Rev. B 62 (2000) 4526-4534.
DOI: 10.1103/physrevb.62.4526
Google Scholar
[32]
H. Wang, G. A. Farias, V. N. Freire. Interface-related exciton-energy blueshift in G aN/A lxGa1− xN zinc-blende and wurtzite single quantum wells. Phys. Rev. B 60 (1999) 5705-5713.
Google Scholar
[33]
S. H. Wei, A. Zunger. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Phys. Rev. B 60 (1991) 5404-5411.
DOI: 10.1103/physrevb.60.5404
Google Scholar
[34]
I. Vurgaftman, J. R. Meyer. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94 (2003) 3675-3696.
DOI: 10.1063/1.1600519
Google Scholar
[35]
P. Perlin, A. Polian. Raman-scattering studies of aluminum nitride at high pressure. T. Suski, Phys. Rev. B 47 (1993) 2874-2877.
DOI: 10.1103/physrevb.47.2874
Google Scholar