Organic Field-Effect Transistors Based on 3’-Flouro-2,2',6,6'-Tetraphenyl-4,4'-Dipyranylidene

Article Preview

Abstract:

In this work, 3’-flouro-2,2',6,6'-tetraphenyl-4,4'-dipyranylidene (3FDP) was originally synthesized and investigated with density functional theory (DFT) calculations, ultraviolet–visible spectroscopy (UV–Vis) and cyclic voltammetry (CV) in comparison with 2,2',6,6'-tetraphenyl-4,4'-dipyranylidene (DP) and 4’-flouro-2,2',6,6'-tetraphenyl-4,4'-dipyranylidene (4FDP). 3FDP-based organic field-effect transistors (OFETs) were fabricated with bottom contact configuration on bare SiO2/Si substrate, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (OTS) treated substrate, respectively. The HMDS-treated device showed highest mobility of 4 × 10−4 cm2 V−1 s−1, on/off ratio of 4 × 103 and threshold voltage of −10 V. Finally, vacuum deposited 3FDP films morphology was investigated by X-ray diffraction (XRD) analyses and the results showed higher crystallinity of HMDS-treated 3FDP film compared to the OTS-treated film, leading to a better FET performance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

37-43

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Chabinyc, A. Salleo, Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays, Chem. Mater. 16 (2004) 4509-4521.

DOI: 10.1021/cm049647z

Google Scholar

[2] C.W. Tang, S.A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913.

DOI: 10.1063/1.98799

Google Scholar

[3] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers, Nature 347 (1990) 539-541.

DOI: 10.1038/347539a0

Google Scholar

[4] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185.

Google Scholar

[5] H. Koezuka, A. Tsumura, T. Ando, Field-effect transistor with polythiophene thin film, Synthetic Met 18 (1987) 699–704.

DOI: 10.1016/0379-6779(87)90964-7

Google Scholar

[6] T. Mori, Molecular materials for organic field-effect transistors, J. Phys.: Condens.Matter 20 (2008) 184010.

DOI: 10.1088/0953-8984/20/18/184010

Google Scholar

[7] C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu, Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics, Chem. Rev. 112 (2012) 2208-2267.

DOI: 10.1021/cr100380z

Google Scholar

[8] X.K. Gao, Z. Zhao, High mobility organic semiconductors for field-effect transistors, Sci. China Chem. 58 (2015) 947-968.

DOI: 10.1007/s11426-015-5399-5

Google Scholar

[9] M. Kitamura, Y. Arakawa, Pentacene-based organic field-effect transistors, J. Phys.: Condens. Matter. 20 (2008) 184011.

DOI: 10.1088/0953-8984/20/18/184011

Google Scholar

[10] A.R. Murphy, J.M.J. Fréchet, Organic Semiconducting oligomers for use in thin film transistors, Chem. Rev. 107 (2007) 1066-1096.

DOI: 10.1021/cr0501386

Google Scholar

[11] X.K. Gao, W.F. Qiu, Y.Q. Liu, G. Yu, D.B. Zhu, Organic field-effect transistors based on tetrathiafulvalene derivatives, Pure Appl. Chem. 80 (2008) 2405-2423.

DOI: 10.1351/pac200880112405

Google Scholar

[12] A. Bolag, M. Mamada, J. Nishida, Y. Yamashita, Field-effect transistors based on tetraphenyldipyranylidenes and the sulfur analogues, Chem. Mater. 21 (2009) 4350-4352.

DOI: 10.1021/cm902037w

Google Scholar

[13] M. Courte, M. Alaaeddine, V. Barth, L. Tortech, D. Fichou, Structural and electronic properties of 2,2',6,6'-tetraphenyldipyranylidene and its use as a hole-collecting interfacial layer in organic solar cells, Dyes Pigm. 141 (2017) 487-492.

DOI: 10.1016/j.dyepig.2017.03.002

Google Scholar

[14] C.S.M. Courté, A.K.S. Tang, D. Fichou, Quinoidal 2,2',6,6'-tetraphenyl-dipyranylidene as a dopant-free hole-transport material for stable and cost-effective perovskite solar cells, Energy Technol. 5 (2017) 1852-1858.

DOI: 10.1002/ente.201700448

Google Scholar

[15] C.D. Dimitrakopoulos P.R.L. Malenfant, Organic Thin Film Transistors for Large Area Electronics, Adv. Mater. 14 (2002) 99-117.

DOI: 10.1002/1521-4095(20020116)14:2<99::aid-adma99>3.0.co;2-9

Google Scholar

[16] J. Dagar, V. Yadav, P. Tyagi, R.K. Singh, C.K. Suman, R. Srivastava, Effect of reduction of trap charge carrier density in organic field effect transistors by surface treatment of dielectric layer, J. Appl. Phys. 114 (2013) 224504.

DOI: 10.1063/1.4842856

Google Scholar