Characterization and In Vitro Toxicity of French Process Zinc Oxide Nanoparticles with High Surficial Zinc

Article Preview

Abstract:

In this study, we investigated in vitro toxicity of ZnO nanopowder on L929 fibroblast cell lines. The ZnO nanoparticles were observed to possess relatively more surficial zinc compared to oxygen. Field-emission scanning electron microscope (FESEM) data revealed that the particle morphologies consisted of nanorods, platelets and nodules between 40-100 nm size range. EDS confirmed that there were more zinc elements on the surfaces of the particles. XRD results showed that the calculated average crystallite size of ZnO nanopowder was 44.28 nm. The optical band gap calculated was 3.298 eV based on UV-visible absorption spectra. In vitro toxicity results showed that ZnO concentration at 0.3125mM, 0.625mM and 1.25 mM were considered non-toxic to L929 cell line since the cell viability was higher than 70 % after 72 hours treatment whereas the ZnO nanopowder concentration above 2.5mM was considered toxic. High surficial zinc atoms on ZnO particles could have been a significant factor in cell toxicity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

274-279

Citation:

Online since:

April 2019

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.L. Wang, Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology, ACS Nano. 2 (2008)1987–92.

DOI: 10.1021/nn800631r

Google Scholar

[2] P. Yang, R.Yan, M. Fardy, Semiconductor nanowire: what's next?, Nano Lett. 10 (2010) 1529–36.

DOI: 10.1021/nl100665r

Google Scholar

[3] K.H. Muller, J. Kulkarni, M. Motskin, pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution, ACS Nano. 4 (2010) 6767–79.

DOI: 10.1021/nn101192z

Google Scholar

[4] J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications, Expert opinion on drug delivery. 7(9) (2010) 1063-1077.

DOI: 10.1517/17425247.2010.502560

Google Scholar

[5] S. Mahmud, One dimensional growth of zinc oxide nanostructures from the large micro-particle in a highly rapid synthesis, J. Alloys Cmpd. 509 (2011) 4035-4040.

DOI: 10.1016/j.jallcom.2011.01.013

Google Scholar

[6] W. Strober, Trypan blue exclusion test of cell viability, Curr. Protoc. Immunol. 111 (2015) A3.B.1-A3.B.3.

Google Scholar

[7] L. Shang, K. Nienhaus, G.U. Nienhaus, Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology. 12 (2014) 5.

DOI: 10.1186/1477-3155-12-5

Google Scholar

[8] B.S. Murty, P. Shankar, Baldev Raj, B B Rath, James Murday, Textbook of Nanoscience and Nanotechnology, Springer Science & Business Media, (2013).

DOI: 10.1007/978-3-642-28030-6

Google Scholar

[9] L.C Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R. A. Rahman, Characterization, Antibacterial and Bio-Compatibility of Zinc Oxide Structures, Aust. J. Basic & Appl. Sci. 8(15) (2014) 12-17.

DOI: 10.1063/1.4915219

Google Scholar

[10] V.Ischenko, S. Polarz, D.Grote, V. Stavarache, K. Fink, and M. Driess, Zinc Oxide Nanoparticles with Defects, Adv. Funct. Mater. 15 (2005) 1945–(1954).

DOI: 10.1002/adfm.200500087

Google Scholar

[11] T. Lozano, M. Rey, E. Rojas, S. Moya, J. Fleddermann, I. Estrela-Lopis, E. Donath, B. Wang, Z. Mao, C. Gao, A. González-Fernández, Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines, J. Phys.: Conf. Ser. 304 (2011) 012046.

DOI: 10.1088/1742-6596/304/1/012046

Google Scholar

[12] L.C Ann, S. Mahmud, A. Seeni, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, Structural morphology and in vitro toxicity studies of nano- and micro- sized zinc oxide nanostructures, Journal Environmental Chemical Engineering. 3 (2015) 436-444.

DOI: 10.1016/j.jece.2014.12.015

Google Scholar

[13] T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties ACS Nano. 2 (10) (2008) pp.2121-2134.

DOI: 10.1021/nn800511k

Google Scholar

[14] W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles, Toxicol. Lett. 199(2010) 389–397.

DOI: 10.1016/j.toxlet.2010.10.003

Google Scholar

[15] M Premanathan, K Karthikeyan, K Jeyasubramanian, G Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanomedicine: Nanotechnology, Biology and Medicine 7 (2) (2011) 184-192.

DOI: 10.1016/j.nano.2010.10.001

Google Scholar