[1]
N.L. Stock, J. Seller, K. Vinodgal, P.V. Kamat, Combinative sonolysis and photocatalysis for textile dye degradation, Environ. Sci. Technol., 34 (2000) 1747–1750.
DOI: 10.1021/es991231c
Google Scholar
[2]
J. W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc Oxide Nanoparticles For Selective Destruction Of Tumor Cells And Potential For Drug Delivery Applications. Expert Opin. Drug Delivery, 7 (2010) 1063−1077.
DOI: 10.1517/17425247.2010.502560
Google Scholar
[3]
R. Brayner, R. Ferrari-Illiou, N. Briviois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6 (2006) 866–870.
DOI: 10.1021/nl052326h
Google Scholar
[4]
L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO nanostructures, defects, and devices, Materials Today, vol. 10, no. 5, p.40–48, (2007).
DOI: 10.1016/s1369-7021(07)70078-0
Google Scholar
[5]
A. B, Djurišić, Y. H. Leung, A. M. C. Ng, X. Y. Xu, P. K. H. Lee, N. Degger, and R. S. S. Wu, Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts, Small, 11, 26–44, (2015).
DOI: 10.1002/smll.201303947
Google Scholar
[6]
H.F. Krug, and P. Wick, Nanotoxicology: An Interdisciplinary Challenge, Angew. Chem. Int. Ed., 50, 1260–1278, (2011).
DOI: 10.1002/anie.201001037
Google Scholar
[7]
N. Singh, B. Manshian, G.J.S. Jenkins, et al., NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials Biomaterials, 30 (2009) 3891-3914.
DOI: 10.1016/j.biomaterials.2009.04.009
Google Scholar
[8]
Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air, J. Appl. Phys., 94 (2003) 354-358.
DOI: 10.1063/1.1577819
Google Scholar
[9]
R.G. Singh, F. Singh, V. Kumar & R.M. Mehra, Growth kinetics of ZnO nanocrystallites: Structural, optical and photoluminescence properties tuned by thermal annealing, Current Applied Physics, 11, 624-630, (2011).
DOI: 10.1016/j.cap.2010.10.013
Google Scholar
[10]
M.Birkholz, Thin films analysis of X-Ray Scattering, (WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, 2006).
Google Scholar
[11]
T. Lozano, M. Rey, E. Rojas, S.E. Moya, J. Fleddermann, I. Estrela-Lopis, E. Donath, B. Wang, Z. Mao, C. Gao, A. González-Fernández, Cytotoxicity Effects of Metal Oxide Nanoparticles in Human Tumor Cell Lines, J. Phys.: Conf. Ser., 304 (2011) 012046.
DOI: 10.1088/1742-6596/304/1/012046
Google Scholar
[12]
I. M. M. Paino, F. J. Gonçalves, F. L. Souza, and V. Zucolotto, Zinc Oxide Flower-Like Nanostructures That Exhibit Enhanced Toxicology Effects in Cancer Cells, ACS Appl. Mater.Interfaces, 2016, 8, 32699-32705.
DOI: 10.1021/acsami.6b11950
Google Scholar
[13]
R. Wahab, M.A. Siddiqui, Q.Saquib, S. Dwivedi, J.Ahmad, J. Musarrat. A.A. Al-Khedhairy, H.S. Shin, Zno Nanoparticles Induced Oxidative Stress And Apoptosis In Hepg2 And MCF-7 Cancer Cells And Their Antibacterial Activity, Colloids Surf. B, 2014, 117, 267−276.
DOI: 10.1016/j.colsurfb.2014.02.038
Google Scholar
[14]
A. Nel, T. Xia, L. Madler, N. Li, Toxic Potential Of Materials At The Nanolevel, Science 2006, 311, 622−627.
DOI: 10.1126/science.1114397
Google Scholar
[15]
A. Punnoose, K. Dodge, JW Rasmussen, J. Chess, D. Wingett, C. Anders, Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials, ACS Sustainable Chemistry & Engineering, 2014;2(7):1666-1673.
DOI: 10.1021/sc500140x
Google Scholar
[16]
Y. N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles, Materials, 2012, 5, 2850-2871.
DOI: 10.3390/ma5122850
Google Scholar