[1]
P.R. Devaraja, D.N. Avadhani, C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, Synthesis, structural and luminescence studies of magnesium oxide nanopowder, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 118 (2014) 847-851.
DOI: 10.1016/j.saa.2013.08.050
Google Scholar
[2]
L. Kumari, W.Z. Li, C. H. Vanoy, R. M. Leblanc, D.Z. Wang, Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO, Ceram. Inter. 35 (2009) 3355-3364.
DOI: 10.1016/j.ceramint.2009.05.035
Google Scholar
[3]
H. Niu, Q. Yang, K. Tang, Y. Xie, A simple solution calcination route to porous MgO nanoplates, Microporous and Mesoporous Mater. 96 (2006) 428-433.
DOI: 10.1016/j.micromeso.2006.07.013
Google Scholar
[4]
M. Zhao, X.L. Chen, X.N. Zhang, H. Li, H.Q. Li, L. Wu, Preparation and characterization of networked rectangular MgO nanostrucures, Chem. Phys. Lett. 388 (2004). 7-11.
Google Scholar
[5]
R.M. Mohamed, A. Shawky, I.A. Mkhalid, Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye, J. Phys. Chem. Solids 101 (2017) 50-57.
DOI: 10.1016/j.jpcs.2016.10.009
Google Scholar
[6]
L.A. Ma, Z. X. Lin, J. Y. Lin, Y.A. Zhang, L. Q. Hua, T. L. Guo, Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties, Physica E 41(2009) 1500–1503.
DOI: 10.1016/j.physe.2009.04.028
Google Scholar
[7]
J. Feng, S. Liu, T. Chen, Y. Ren, Y. Lv, Z. Fan, Fabrication of MgO nanosheets for removal of Ni (Ⅱ) via hydrothermal and calcination method without surfactant, Mater. Chem. Phys. 183 (2016) 499-505.
DOI: 10.1016/j.matchemphys.2016.09.007
Google Scholar
[8]
M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi, N. Kamarudin, Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents, Nanoscale Res. Lett. 9 (2014) 134.
DOI: 10.1186/1556-276x-9-134
Google Scholar
[9]
F. Gu, C.Z. Li, and H.B. Jiang, Combustion synthesis and photoluminescence of MgO: Eu3+ nanocrystals with Li addition, J. Cryst. Growth 289 (2006) 400-404.
DOI: 10.1016/j.jcrysgro.2005.11.116
Google Scholar
[10]
K. Kaviyarasu, P.A. Devarajan, Synthesis and characterization studies of cadmium doped MgO nanocrystals for optoelectronics application, Adv. Appl. Sci. Res., 2 (2011) 131-138.
Google Scholar
[11]
K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 249 (2013) 456-462.
DOI: 10.1016/j.powtec.2013.09.016
Google Scholar
[12]
R. Verma, K. Kumar Naik, J. Gangwar, A. K. Srivastava, Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method, Mater. Chem. Phys., 148 (2014) 1064.
DOI: 10.1016/j.matchemphys.2014.09.018
Google Scholar
[13]
N. Kamarulzaman, N. F. Chayed, N. Badar, M. F. Kasim, D. T. Mustaffa, K. Elong, R. Rusdi, T. Oikawa, H. Furukawa, Band Gap Narrowing of 2-D Ultra-Thin MgO Graphene-Like Sheets, ECS J. Solid State Sci. Technol. 5 (2016) Q3038-Q3045.
DOI: 10.1149/2.0081611jss
Google Scholar
[14]
N. F. Chayed, N. Badar, R. Rusdi, A. Azahidi, N. Kamarulzaman, Band gap energies of Li2xMg(1-x)O materials synthesized by the sol–gel method, J. Cryst. Growth 362 (2013) 268–270.
DOI: 10.1016/j.jcrysgro.2011.12.090
Google Scholar
[15]
N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes, Results in Physics 6 (2016) 217–230.
DOI: 10.1016/j.rinp.2016.04.001
Google Scholar
[16]
H. Tanaka, S. Fujita, Fabrication of wide-band-gap MgxZn1−xO quasi-ternary alloys by molecular-beam epitaxy, Appl. Phys. Lett. 86 (2005) 192911.
DOI: 10.1063/1.1923762
Google Scholar
[17]
H. Cui, X. Wu, Y. Chen, J. Zhang, R.I. Boughton. Influence of copper doping on adsorption and antibacterial behaviour of MgO prepared by co-precipitation, Mater. Res. Bull. 61 (2014) 511-518.
DOI: 10.1016/j.materresbull.2014.10.067
Google Scholar
[18]
R. Rusdi, A.A. Rahman, N.S. Mohamed, N. Kamarudin, N. Kamarulzaman, Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures, Powder Technol. 210 (2011) 18–22.
DOI: 10.1016/j.powtec.2011.02.005
Google Scholar