Effect of Cu Doped in MgO on Nanostructures and their Band Gap Energies

Article Preview

Abstract:

Doping of the materials with other metals or transition metals will modify the properties of the nanomaterials. In this work, MgO and Cu doped MgO which are Mg0.95Cu0.05O and Mg0.90Cu0.10O nanomaterials are synthesized using a self-propagating combustion method. The samples are annealed at 900 °C for 24 hours. The phase and purity of the synthesized samples are studied using X-Ray Diffraction (XRD) and the result revealed that the samples are pure and single phase. The morphology and crystallite size of the pure samples are examined using Field Emission Scanning Electron Microscope (FESEM). The result shows polyhedral morphology with agglomeration of crystallite and average crystallite size of the samples is between 40 to 210 nm. The band gap obtained for MgO nanostructures is 6.38 eV which is lower than bulk MgO of 7.8 eV. The presence of Cu causes the narrowing the band gap energy of Mg0.95Cu0.05O and Mg0.90Cu0.10O samples to 4.28 eV and 3.35 eV respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

323-328

Citation:

Online since:

April 2019

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.R. Devaraja, D.N. Avadhani, C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, Synthesis, structural and luminescence studies of magnesium oxide nanopowder, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 118 (2014) 847-851.

DOI: 10.1016/j.saa.2013.08.050

Google Scholar

[2] L. Kumari, W.Z. Li, C. H. Vanoy, R. M. Leblanc, D.Z. Wang, Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO, Ceram. Inter. 35 (2009) 3355-3364.

DOI: 10.1016/j.ceramint.2009.05.035

Google Scholar

[3] H. Niu, Q. Yang, K. Tang, Y. Xie, A simple solution calcination route to porous MgO nanoplates, Microporous and Mesoporous Mater. 96 (2006) 428-433.

DOI: 10.1016/j.micromeso.2006.07.013

Google Scholar

[4] M. Zhao, X.L. Chen, X.N. Zhang, H. Li, H.Q. Li, L. Wu, Preparation and characterization of networked rectangular MgO nanostrucures, Chem. Phys. Lett. 388 (2004). 7-11.

Google Scholar

[5] R.M. Mohamed, A. Shawky, I.A. Mkhalid, Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye, J. Phys. Chem. Solids 101 (2017) 50-57.

DOI: 10.1016/j.jpcs.2016.10.009

Google Scholar

[6] L.A. Ma, Z. X. Lin, J. Y. Lin, Y.A. Zhang, L. Q. Hua, T. L. Guo, Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties, Physica E 41(2009) 1500–1503.

DOI: 10.1016/j.physe.2009.04.028

Google Scholar

[7] J. Feng, S. Liu, T. Chen, Y. Ren, Y. Lv, Z. Fan, Fabrication of MgO nanosheets for removal of Ni (Ⅱ) via hydrothermal and calcination method without surfactant, Mater. Chem. Phys. 183 (2016) 499-505.

DOI: 10.1016/j.matchemphys.2016.09.007

Google Scholar

[8] M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi, N. Kamarudin, Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents, Nanoscale Res. Lett. 9 (2014) 134.

DOI: 10.1186/1556-276x-9-134

Google Scholar

[9] F. Gu, C.Z. Li, and H.B. Jiang, Combustion synthesis and photoluminescence of MgO: Eu3+ nanocrystals with Li addition, J. Cryst. Growth 289 (2006) 400-404.

DOI: 10.1016/j.jcrysgro.2005.11.116

Google Scholar

[10] K. Kaviyarasu, P.A. Devarajan, Synthesis and characterization studies of cadmium doped MgO nanocrystals for optoelectronics application, Adv. Appl. Sci. Res., 2 (2011) 131-138.

Google Scholar

[11] K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 249 (2013) 456-462.

DOI: 10.1016/j.powtec.2013.09.016

Google Scholar

[12] R. Verma, K. Kumar Naik, J. Gangwar, A. K. Srivastava, Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method, Mater. Chem. Phys., 148 (2014) 1064.

DOI: 10.1016/j.matchemphys.2014.09.018

Google Scholar

[13] N. Kamarulzaman, N. F. Chayed, N. Badar, M. F. Kasim, D. T. Mustaffa, K. Elong, R. Rusdi, T. Oikawa, H. Furukawa, Band Gap Narrowing of 2-D Ultra-Thin MgO Graphene-Like Sheets, ECS J. Solid State Sci. Technol.  5 (2016) Q3038-Q3045.

DOI: 10.1149/2.0081611jss

Google Scholar

[14] N. F. Chayed, N. Badar, R. Rusdi, A. Azahidi, N. Kamarulzaman, Band gap energies of Li2xMg(1-x)O materials synthesized by the sol–gel method, J. Cryst. Growth 362 (2013) 268–270.

DOI: 10.1016/j.jcrysgro.2011.12.090

Google Scholar

[15] N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes, Results in Physics 6 (2016) 217–230.

DOI: 10.1016/j.rinp.2016.04.001

Google Scholar

[16] H. Tanaka, S. Fujita, Fabrication of wide-band-gap MgxZn1−xO quasi-ternary alloys by molecular-beam epitaxy, Appl. Phys. Lett. 86 (2005) 192911.

DOI: 10.1063/1.1923762

Google Scholar

[17] H. Cui, X. Wu, Y. Chen, J. Zhang, R.I. Boughton. Influence of copper doping on adsorption and antibacterial behaviour of MgO prepared by co-precipitation, Mater. Res. Bull. 61 (2014) 511-518.

DOI: 10.1016/j.materresbull.2014.10.067

Google Scholar

[18] R. Rusdi, A.A. Rahman, N.S. Mohamed, N. Kamarudin, N. Kamarulzaman, Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures, Powder Technol. 210 (2011) 18–22.

DOI: 10.1016/j.powtec.2011.02.005

Google Scholar