Magnetic Cooperative Phenomenon with Unpaired sp-Electrons System by MBE Low-Temperature Growth

Article Preview

Abstract:

We present a new possibility of crystal growth as synthesis of materials containing high concentrations of unpaired sp electrons by growth of Be doped Gallium Arsenides at low temperatures of 200-3000C using Molecular Beam Epitaxy (MBE) and investigate a possibility of applications of magnetotransport properties based on these unpaired sp-electrons to spintronics devices.The present study using high concentration of unpaired sp-electrons by the growth of Beryllium-doped GaAs layers at low temperatures resulted in a cooperative transition of localized spins at low temperature and also affected the mechasnism of tranport properties of the sample from hopping conduction to valence band conduction.This attempts will give rise to a possibility of adding new functions to existing electronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

336-341

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tobias Kosub et al., Nature Communications 8,13985 (2017).

Google Scholar

[2] T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Nature Nanotechno. 11, 231–241 (2016).

Google Scholar

[3] P. Wadley et al., Science 351, 587–590 (2016).

Google Scholar

[4] A. Blandin, J. Appl. Phys.  39, 1285 (1968).

Google Scholar

[5] J. Philip et al., Nature Materials 5, 298–304 (2006).

Google Scholar

[6] C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), p.360.

Google Scholar

[7] N. Inami, M. A. Mohamed, E. Shikoh, A. Fujiwara, Appl. Phys. Lett. 92 (24), 243115 (2008).

DOI: 10.1063/1.2949075

Google Scholar

[8] D.W. Abraham, M. M. Frank, S. Guha, Appl. Phys. Lett. 87, 252502 (2005).

Google Scholar

[9] Y.-C. Chi, Y. –Y. Wei, J. –H. Chao, Y. Liou, Appl. Phys. Lett. 93, 036101 (2008).

Google Scholar

[10] K. W. Bae, M. A. Mohamed, D.W. Jung, N. Otsuka, J. Appl. Phys. 109 (7), 073918 (2011).

Google Scholar

[11] A. Suda and N. Otsuka, Appl. Phys. Lett. 73,1529 (1998).

Google Scholar

[12] D. C. Look, in Properties of Gallium Arsenide, 3rd ed., edited by M. R. Brozel and G.E. Stillman (INSPEC, London, 1996), p.684.

Google Scholar

[13] M. A. Mohamed, P. T. Lam, K. W. Bae, N. Otsuka,, J. Appl. Phys. 110 (12), 123716 (2011).

Google Scholar

[14] P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

Google Scholar

[15] M.A. Mohamed, P. T. Lam, N. Otsuka, J. Crystal Growth 378, pp.329-332 (2013).

Google Scholar

[16] M. A. Mohamed, P. T. Lam, N. Otsuka, J. Appl. Phys. 114 (8), 083716 (2013).

Google Scholar

[17] Jiri Tucek, Katerina Hola et al., Nat Commun. 8: 14525 (2017).

Google Scholar

[18] Yuanyuan Sun, Yongping Zheng et al., npj Quantum Materials 2:5 (2017).

Google Scholar

[19] A. Altintas, A.D. Guuclu, Solid State Communications 281, p.48 (2018).

Google Scholar

[20] Michael Slota, Ashok Keerthi et al., Nature 557, p.691 (2018).

Google Scholar