Mathematic Model and Method for Solving the Heat-Exchange Problem in Electron-Beam Welding of Arbitrary Areas

Article Preview

Abstract:

For the first time in this article, a mathematical model has been developed for calculating the temperature fields in arbitrary areas in electron-beam welding; this model was created in the form of a boundary value problem of mathematical physics for a parabolic equation of heat conductivity with Dirichlet boundary conditions. A new integral transformation was constructed for a two-dimensional finite space, with the use of which, as well as the finite element method and Galerkin's method, a temperature field has been determined in the form of a convergent series.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

173-182

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] John A. Goldak, & Mehdi Akhlaghi (2005). Computational welding mechanics. USA: Springer.

Google Scholar

[2] Vinokurov, V.A., & Grigor'janc, A.G. (1984). Teorija svarochnyh deformacij i naprjazhenij. M: Mashinostroenie.

Google Scholar

[3] Gatovskij, K.M., & Karhin, V.A. (1980). Teorija svarochnyh deformacij i naprjazhenij. L: Leningr. korablestroit.

Google Scholar

[4] Prohorenko, V.M. (2009). Napruzhennja ta deformacії u zvarnih z'єdnannjah і konstrukcіjah. Kyiv: NTUU «KPІ.

Google Scholar

[5] Liu, G.R., & S.-Quek, S. (2003). The Finite Element Method: A Practical Course. Butterword Heinemann.

Google Scholar

[6] Gallager, R. (1986). Metod konechnyh jelementov. Osnovy. M: Mir, (1986).

Google Scholar

[7] Berdnik, M.G. (2017). Matematichna model і metod rіshennja uzagalnenoї zadachі Nejmana teploobmіnu kuskovo-odnorіdnogo cilіndra. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 86-91.

DOI: 10.29202/nvngu

Google Scholar