[1]
Rudenko, O.A., Kruglov, A.A., & Safiullin, R.V. (2006). Using the effect of low-temperature superplastic in superplastic forming technology. Kuznechno-shtampovochnoye proizvodstvo, (4), 5- 9.
Google Scholar
[2]
Kaibyshev, O.A., Utyashev, F.Z. (2002) Sverkhplatichnost',izmel'cheniye struktury i obrabotka trudnodeformiruyemykh splavov. Moscow: Nauka.
Google Scholar
[3]
Smirnov, O.M. (1979) Obrabotka metallov davleniyem v sostoyaniya sverkhplastichnosti. Moscow: Mashinostroenie.
Google Scholar
[4]
Balasubramanian, M., Ganesh, P., Ramanathan, K., Santhanam, V., & Kumar, S. (2015). Superplastic forming of a three-Stage hemispherical 5083 aluminium profile. Journal of Mechanical Engineering, (61), 365-373.
DOI: 10.5545/sv-jme.2014.2178
Google Scholar
[5]
Tuoyang, Z, Yong, L., Daniel, G., Sanders, B. L., Weidong, Z., & Canxu, Z. (2014). Development of fine-grain size titanium 6Al–4V alloy sheet material for low temperature superplastic forming. Materials Science and Engineering: A, (608), 265-272.
DOI: 10.1016/j.msea.2014.04.098
Google Scholar
[6]
Chang-wen, W., Tao, Z., Guofeng, W., Jing, G., & He, F. (2015). Superplastic forming and diffusion bonding of Ti–22Al–24Nb alloy. Journal of Materials Processing Technology, (222), 122-127.
DOI: 10.1016/j.jmatprotec.2015.03.005
Google Scholar
[7]
Zhihao, D, Shaosong, J., Kaifeng, Z., Zhen, L., Baoyong, L., & Dalin, Z. (2016). The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Materials & Design, (104), 242-250.
DOI: 10.1016/j.matdes.2016.05.046
Google Scholar
[8]
Kruglov, A.A., Ganieva, V.R., & Enikeev, F.U. (2017). Determination of superplastic properties from the results of technological experiments. Advances in Engineering Software, (112), 54-65.
DOI: 10.1016/j.advengsoft.2017.06.014
Google Scholar
[9]
Kumaresan, G., & Kalaichelvan, K. (2014). Experimental Studies of a Rectangular Cup Formation of Al 7075 Alloy in Superplastic Forming Process. Procedia Materials Science, (6), 892-896.
DOI: 10.1016/j.mspro.2014.07.106
Google Scholar
[10]
Ramesh Babu, S., Deivanayagam, S., & Aravind, M. (2014) Determination of Material Parameters during Superplastic Forming of AA 5086 Alloy. Procedia Engineering, (97), 1379-1386.
DOI: 10.1016/j.proeng.2014.12.419
Google Scholar
[11]
Rubenkova, L.A. (1960). Determination of sheet steel plasticity based on hydrostatic test results Vestnik mashinostroyeniya, (6), 12-13.
Google Scholar
[12]
Tomlenov, A.D. (1958). Theory of hydrostatic sheet metal testing. Vestnik mashinostroyeniya, (10), 47-49.
Google Scholar
[13]
Smirnov-Alyaev, G.A., Chikidovsky, V.P. (1972). Eksperimental'noye issledovaniye v obrabotke metallov davleniyem. Leningrad, Mashinostroenie.
Google Scholar
[14]
Isachenkov, E.I. (1967). Shtampovka rezinoy i zhidkost'yu. Moscow, Mashinostroenie.
Google Scholar
[15]
Ganiyeva, V.R., Lyubimov, A.S., Zherebtsov, YU.V., & Yenikeyev, F.U. (2011). Method of calculating the mode of superplastic forming of an elliptical membrane. Kuznechno-shtampovochnoye proizvodstvo, (4), 3-9.
Google Scholar
[16]
Chan, K.C.,& Show, K.K. (2002). Analysis of hot limit strains of a superplastic 5083 aluminum under biaxial tension. International Journal of Mechanical Science, (44), 1467-14782.
DOI: 10.1016/s0020-7403(02)00037-1
Google Scholar
[17]
Tselikov, A.I. (1958). Voprosy obrabotki metallov davleniyem. Moscow, Izdatel'stvo akademii nauk.
Google Scholar
[18]
Kaibyshev, O.A., Kruglov, A.A., & Lutfullin, R.Ya. (2005). Production of equal strength spherical vessels using superplastic deformation. Problemy mashinostroyeniya i nadezhnosti mashin, (6), 94-97.
Google Scholar
[19]
Titov, V.A., Rehta, А.S., & Garanenko, Т.R. (2017). Some regularities of isothermal viscoplastic forming of a membrane from aluminum alloys. Obrabotka materialov davleniyem, 45(2), 30-34.
Google Scholar
[20]
Malinin, N.N. (1975). Prikladnaya teoriya plastichnosti i polzuchesti. Moscow, Mashinostroenie.
Google Scholar
[21]
Rabotnov, Yu.N. (1970). Kratkovremennaya polzuchest.' Moscow, Nauka.
Google Scholar