Development of an Experimental Technique and Evaluate Limit of Plastic Deformation of Titanium Alloy OT4-0 under Superplastic Conditions

Article Preview

Abstract:

The method and unit for experimental research of membrane formation from titanium alloys under conditions of superplastic is developed, which allows to determine necessary parameters of deformation. The unit is designed to deform titanium sheets in isothermal conditions by applying a uniform distributed load. When membrane is formed by a gas medium, a biaxial tension is realized. This type of test is used to assess the plastic properties of metals. In this work, the limiting deformations of the sheet titanium alloy OT4-0 have been evaluated in the formation of the membrane. Installed during the process of superplastic deformation the connection between the external parameters of deformation (force, temperature) with the depth of formation of the membrane in time and strain distribution along its generatrix.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

183-192

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rudenko, O.A., Kruglov, A.A., & Safiullin, R.V. (2006). Using the effect of low-temperature superplastic in superplastic forming technology. Kuznechno-shtampovochnoye proizvodstvo, (4), 5- 9.

Google Scholar

[2] Kaibyshev, O.A., Utyashev, F.Z. (2002) Sverkhplatichnost',izmel'cheniye struktury i obrabotka trudnodeformiruyemykh splavov. Moscow: Nauka.

Google Scholar

[3] Smirnov, O.M. (1979) Obrabotka metallov davleniyem v sostoyaniya sverkhplastichnosti. Moscow: Mashinostroenie.

Google Scholar

[4] Balasubramanian, M., Ganesh, P., Ramanathan, K., Santhanam, V., & Kumar, S. (2015). Superplastic forming of a three-Stage hemispherical 5083 aluminium profile. Journal of Mechanical Engineering, (61), 365-373.

DOI: 10.5545/sv-jme.2014.2178

Google Scholar

[5] Tuoyang, Z, Yong, L., Daniel, G., Sanders, B. L., Weidong, Z., & Canxu, Z. (2014). Development of fine-grain size titanium 6Al–4V alloy sheet material for low temperature superplastic forming. Materials Science and Engineering: A, (608), 265-272.

DOI: 10.1016/j.msea.2014.04.098

Google Scholar

[6] Chang-wen, W., Tao, Z., Guofeng, W., Jing, G., & He, F. (2015). Superplastic forming and diffusion bonding of Ti–22Al–24Nb alloy. Journal of Materials Processing Technology, (222), 122-127.

DOI: 10.1016/j.jmatprotec.2015.03.005

Google Scholar

[7] Zhihao, D, Shaosong, J., Kaifeng, Z., Zhen, L., Baoyong, L., & Dalin, Z. (2016). The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Materials & Design, (104), 242-250.

DOI: 10.1016/j.matdes.2016.05.046

Google Scholar

[8] Kruglov, A.A., Ganieva, V.R., & Enikeev, F.U. (2017). Determination of superplastic properties from the results of technological experiments. Advances in Engineering Software, (112), 54-65.

DOI: 10.1016/j.advengsoft.2017.06.014

Google Scholar

[9] Kumaresan, G., & Kalaichelvan, K. (2014). Experimental Studies of a Rectangular Cup Formation of Al 7075 Alloy in Superplastic Forming Process. Procedia Materials Science, (6), 892-896.

DOI: 10.1016/j.mspro.2014.07.106

Google Scholar

[10] Ramesh Babu, S., Deivanayagam, S., & Aravind, M. (2014) Determination of Material Parameters during Superplastic Forming of AA 5086 Alloy. Procedia Engineering, (97), 1379-1386.

DOI: 10.1016/j.proeng.2014.12.419

Google Scholar

[11] Rubenkova, L.A. (1960). Determination of sheet steel plasticity based on hydrostatic test results Vestnik mashinostroyeniya, (6), 12-13.

Google Scholar

[12] Tomlenov, A.D. (1958). Theory of hydrostatic sheet metal testing. Vestnik mashinostroyeniya, (10), 47-49.

Google Scholar

[13] Smirnov-Alyaev, G.A., Chikidovsky, V.P. (1972). Eksperimental'noye issledovaniye v obrabotke metallov davleniyem. Leningrad, Mashinostroenie.

Google Scholar

[14] Isachenkov, E.I. (1967). Shtampovka rezinoy i zhidkost'yu. Moscow, Mashinostroenie.

Google Scholar

[15] Ganiyeva, V.R., Lyubimov, A.S., Zherebtsov, YU.V., & Yenikeyev, F.U. (2011). Method of calculating the mode of superplastic forming of an elliptical membrane. Kuznechno-shtampovochnoye proizvodstvo, (4), 3-9.

Google Scholar

[16] Chan, K.C.,& Show, K.K. (2002). Analysis of hot limit strains of a superplastic 5083 aluminum under biaxial tension. International Journal of Mechanical Science, (44), 1467-14782.

DOI: 10.1016/s0020-7403(02)00037-1

Google Scholar

[17] Tselikov, A.I. (1958). Voprosy obrabotki metallov davleniyem. Moscow, Izdatel'stvo akademii nauk.

Google Scholar

[18] Kaibyshev, O.A., Kruglov, A.A., & Lutfullin, R.Ya. (2005). Production of equal strength spherical vessels using superplastic deformation. Problemy mashinostroyeniya i nadezhnosti mashin, (6), 94-97.

Google Scholar

[19] Titov, V.A., Rehta, А.S., & Garanenko, Т.R. (2017). Some regularities of isothermal viscoplastic forming of a membrane from aluminum alloys. Obrabotka materialov davleniyem, 45(2), 30-34.

Google Scholar

[20] Malinin, N.N. (1975). Prikladnaya teoriya plastichnosti i polzuchesti. Moscow, Mashinostroenie.

Google Scholar

[21] Rabotnov, Yu.N. (1970). Kratkovremennaya polzuchest.' Moscow, Nauka.

Google Scholar