First-Principles Study of Structural, Electronic, Optical and Elastic Properties of Cadmium Based Fluoro-Perovskite MCdF3 (M= Rb, Tl)

Article Preview

Abstract:

This paper presents a theoretical study using the full potential linearized augmented plane wave approach (FP-LAPW) based on the density functional theory (DFT) to predict the structural and electronic properties of RbCdF3 and TlCdF3 compounds. The exchange-correlation potential is treated by the local density approximation (LDA), generalized gradient approximation (GGA) and modified Beck-Johnson exchange potential (mBJ). The calculated structural properties such as the equilibrium lattice parameter, the bulk modulus and its pressure derivative are in good agreement with the available data. The obtained results for the band structure and the density of states (DOS) show that the RbCdF3 (TlCdF3) compound have an indirect band gap of 6.77 and 3.07 eV (5.70 and 3.66 eV) with TB-mBJ and WC method respectively. From the electronic transition from valence conduction bands to conduction bands the optical properties were calculated. The elastic constants were calculated using the energy deformation relationship, from these constants the other mechanical properties such as bulk modulus, shear modulus, Young modulus and Poisson ratio were calculate and comment. Lastly, the elastic anisotropy was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 297)

Pages:

173-186

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Wolfram, S. Ellialtioglu, Electronic and optical properties of d-band perovskites, Cambridge University Press, (2006).

Google Scholar

[2] Mitchell, H. Roger, Perovskites-modern and ancient, Thunder Bay, Almaz Press, Vol. 7, (2002).

Google Scholar

[3] J. Zylberberg, A. Belik, A, E. Takayama-Muromachi and Z.G. Ye, Bismuth aluminate, a new high-Tc lead-free piezo-/ferroelectric, Chemistry of Materials, 19 (26) (2007) 6385-6390.

DOI: 10.1021/cm071830f

Google Scholar

[4] K. Huang,  M. Feng,  J.B. Goodenough and  C. Milliken, Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr‐and Mg‐Doped LaGaO3, Journal of The Electrochemical Society, 144 (10) (1997) 3620-3624.

DOI: 10.1149/1.1838058

Google Scholar

[5] P. Dulian, Solid-State Mechanochemical Syntheses of Perovskites, Perovskite Materials Synthesis, Characterisation, Properties and Applications, IntechOpen, (2016).

DOI: 10.5772/61521

Google Scholar

[6] G.G Yakobson, N.E Akhmetova, Alkali metal fluorides in organic synthesis, Synthesis,  (03) (1983) 169-184.

DOI: 10.1055/s-1983-30271

Google Scholar

[7] T. Nishimatsu, N. Terakubo, H. Mizuseki,Y. Kawazoe, D.A. Pawlak, K. Shimamura and T. Fukuda, Band structures of perovskite-like fluorides for vacuum-ultraviolet-transparent lens materials, Japanese journal of applied physics, 41(4A) (2002) L365.

DOI: 10.1143/jjap.41.l365

Google Scholar

[8] R. El Ouenzerfi, S. Ono, A. Quema, M. Goto, M. Sakai and N. Sarukura, Design of wide-gap fluoride heterostructures for deep ultraviolet optical devices, Journal of applied physics, 96 (12) (2004) 7655-7659.

DOI: 10.1063/1.1808474

Google Scholar

[9] N. Sarukura, H. Murakami, E. Estacio, S. Ono, R. El Ouenzerfi, M. Cadatal,T. Nushimatsu,N.Terakubo, H. Misuseki, Y.Kawazoe and A. Yoshikawa, Proposed design principle of fluoride-based materials for deep ultraviolet light emitting devices. Optical Materials, 30 (1) (2007) 1517.

DOI: 10.1016/j.optmat.2006.11.031

Google Scholar

[10] Y.Guo, B.K. Moon, S.H. Park, J.H. Jeong, J.H. Kim, K. Jang and R. Yu, A red-emitting perovskite-type SrLa(1−x)MgTaO6: xEu3+ for white LED application, Journal of Luminescence, 167 (2015) 381-385.

DOI: 10.1016/j.jlumin.2015.06.054

Google Scholar

[11] B. Villacampa, J.C. Gonzalez, R.Alcala and P.J. Alonso, Spectroscopic properties of Cr3+ in RbCdF3, Journal of Physics, Condensed Matter, 3 (42) (1991) 8281.

DOI: 10.1088/0953-8984/3/42/022

Google Scholar

[12] R. Alcala, J.C. Gonzalez, B. Villacampa and P.J. Alonso, Photoluminescence of Ni2+ ions in RbCdF3 and RbCaF3, Journal of luminescence, 48 (1991) 569-573.

DOI: 10.1016/0022-2313(91)90195-2

Google Scholar

[13] C.Dotzler, G.V.M. Williams, A.Edgar and G.A. Appleby, Dosimetric properties of RbCdF3: Mn2+, Radiation Measurements, 42 (4-5) (2007) 586-589.

DOI: 10.1016/j.radmeas.2007.01.078

Google Scholar

[14] W.Knierim, A. Honold, U. Brauch and U. Dürr, Optical and lasing properties of V2+-doped halide crystals, JOSA B, 3 (1) (1986) 119-124.

DOI: 10.1364/josab.3.000119

Google Scholar

[15] J.Ihringer, J.K. Maichle, W. Prandl, A.W. Hewat and T. Wroblewski, Crystal structure of the ceramic superconductor BaPb0.75Bi0.25O3, Zeitschrift für Physik B Condensed Matter, 82 (2) (1991) 171-176.

DOI: 10.1007/bf01324322

Google Scholar

[16] M. Rousseau, J. Y. Gesland, J. Julliard and J. Nouet , Phys. Rev. B, 12 (1975) 1579- 1579.

Google Scholar

[17] P. Hohenberg and W. Kohn, Phys. Rev, B 136 (1964) 864.

Google Scholar

[18] W.Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical review, 140 (4A) (1965) A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[19] P.Blaha, K.Schwarz, P.Sorantin and S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Computer Physics Communications, 59 (2) (1990) 399-415.

DOI: 10.1016/0010-4655(90)90187-6

Google Scholar

[20] P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, and J. Luitz, Wien2k.An augmented plane wave+ local orbitals program for calculating crystal properties, (2001).

Google Scholar

[21] J. P. Perdew and Y. Wang, Phys. Rev, B 45 (1992) 13244.

Google Scholar

[22] J. Perdew, K. Burke and M. Ernzerhof, Phys Rev. Lett, 77 (1996) 3865.

Google Scholar

[23] Z.Wu and R. E. Cohen, More accurate generalized gradient approximation for solids, Physical Review B, 73 (23) (2006) 235116.

DOI: 10.1103/physrevb.73.235116

Google Scholar

[24] F. Tran and P. Blaha, Phys. Rev. Lett, 102 (2009) 226401.

Google Scholar

[25] P. E. Blöchl, O.Jepsen and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Physical Review B, 49 (23) (1994) 16223.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[26] F.D. Murnaghan, Proc.Natl. Acad. Sci.USA, 30 (1944) 5390.

Google Scholar

[27] M. Arakawa, F .Hirayama, H. Ebisu and H. Takeuchi, Fine-structure anomalies in EPR spectra of Gd3+ centres formed in TlCdF3 single crystals, Journal of Physics, Condensed Matter, 18 (31) (2006) 7427.

DOI: 10.1088/0953-8984/18/31/034

Google Scholar

[28] Q-J. Liu, Z-T. Liu, L-P. Feng, Comp. Materials. Sci. 47 (2010) 1016.

Google Scholar

[29] S. Saha, T. P. Sinha, Phys. Rev. B. 62 (2000) 8828.

Google Scholar

[30] T. Charpin, A package for calculating elastic tensors of cubic phases using WIEN laboratory of geometrix, F-75252, Paris,France (2001).

Google Scholar

[31] J. Wang, S. Yip, R. Phillpot and D. Wolf, Crystal instabilities at finite strain, Physical Review Letters, 71 (25) (1993) 4182.

DOI: 10.1103/physrevlett.71.4182

Google Scholar

[32] J. Berger, G. Hauret and M. Rousseau, Brillouin scattering investigation of the structural phase transition of TlCdF3 and RbCaF3, Solid State Communications, 25 (8) (1978) 569-571.

DOI: 10.1016/0038-1098(78)91491-6

Google Scholar

[33] M. Born, On the stability of crystal lattices, Proc, Cambridge Philos, Soc, 36 (1940) 160-172.

Google Scholar

[34] W. Voigt, Lehrbush der Kristallphysik, B.G. Taubner, Leipzig, (1928).

Google Scholar

[35] A.Reuss, and Z. Angew, Math, Mech, 9 (1929) 49–58.

Google Scholar

[36] R. Hill, Proc, Phys, Soc, A, 65 (1952) 349–354.

Google Scholar

[37] S.F. Pugh, Phil. Mag, 45 (1954) 823–843.

Google Scholar

[38] J.F. Nye, Properties of Crystals, Oxford University Press, New York, (1985).

Google Scholar

[39] E.Schreiber, O.L. Anderson, N.Soga, Elastic constants and measurements, M.C Graw Hill, NewYork, (1973).

Google Scholar

[40] O.L Anderson, Phys, Chem, Solids, 24 (1963) 909.

Google Scholar