[1]
A K Lakshminarayanan, K Shanmugam, V Balasubramanian. Effect of Welding Processes on Tensile and Impact Properties, Hardness and Microstructure of AISI 409M Ferritic Stainless Joints Fabricated by Duplex Stainless Steel Filler Metal. Journal of iron and steel research, international. 2009, 16(5): 66-72.
DOI: 10.1016/s1006-706x(10)60013-1
Google Scholar
[2]
J.L. Cavazos. Characterization of precipitates formed in a ferritic stainless steel stabilized with Zr and Ti additions" Materials Characterization. 56 (2006) 96– 101.
DOI: 10.1016/j.matchar.2005.05.006
Google Scholar
[3]
B.W. Ahn, D.H. Choi, D.J. Kim, S.B. Jung. Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool. Materials Science and Engineering A. 532 (2012) 476-479.
DOI: 10.1016/j.msea.2011.10.109
Google Scholar
[4]
H. Cho, H. Han, S. Hong, J. Park, Y. Kwon, S. Kim, R.J. Steel. Microstructural analysis of friction stir welded ferritic stainless steel "Materials Science and Engineering A 528 (2011) 2889–2894.
DOI: 10.1016/j.msea.2010.12.061
Google Scholar
[5]
M.B. Bilgin, Cemal Meran. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Materials and Design 33 (2012) 376–383.
DOI: 10.1016/j.matdes.2011.04.013
Google Scholar
[6]
J. C. Villafuerte, E. Pardo, H. W. Kerr "The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds. Metallurgical Transactions A, July 1990, Volume 21, Issue 7, pp.2009-2019.
DOI: 10.1007/bf02647249
Google Scholar
[7]
J.C. Villafuerte, H.W. Kerr, S.A. David. Mechanisms of equiaxed grain formation in ferritic stainless steel gas tungsten arc welds. Materials Science and Engineering A194 (1995) 187-191.
DOI: 10.1016/0921-5093(94)09656-2
Google Scholar
[8]
T. Mohandas, G.M. Reddy, M. Naveed. A comparative evaluation of gas tungsten and shielded metal arc welds of a ferritic stainless steel. Journal of Materials Processing Technology 94 (1999) 133-140.
DOI: 10.1016/s0924-0136(99)00092-8
Google Scholar
[9]
M.O.H. Amuda, S. Mridha. Comparative evaluation of grain refinement in AISI 430 FSS welds by elemental metal powder addition and cryogenic cooling. Materials and Design 35 (2012) 609–618.
DOI: 10.1016/j.matdes.2011.09.066
Google Scholar
[10]
M.O.H. Amuda, S. Mridha. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds. Materials and Design 47 (2013) 365–371.
DOI: 10.1016/j.matdes.2012.12.008
Google Scholar
[11]
G. Mallaiah, A. Kumar, P.R. Reddy, G.M. Reddy. Influence of grain refining elements on mechanical properties of AISI 430 ferritic stainless steel weldments - Taguchi approach. Materials and Design 36 (2012) 443–450.
DOI: 10.1016/j.matdes.2011.11.063
Google Scholar
[12]
G. Mallaiah, K. Adepu, R.R. Pinninti, M.R. Gankidi. Effect of copper and aluminum addition on mechanical properties and corrosion behavior of AISI 430 ferritic stainless steel gas tungsten arc welds. j mater res technol. 2013;2 (3):238–249.
DOI: 10.1016/j.jmrt.2013.02.009
Google Scholar
[13]
Annual Book of ASTM Standards. Philadelphia, PA: American Society for Testing of Materials; (2004).
Google Scholar
[14]
M. Alizadeh-Sh, S.P.H. Marashia, M. Pouranvari. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties. Materials and Design 56 (2014) 258–263.
DOI: 10.1016/j.matdes.2013.11.022
Google Scholar
[15]
JC Lippold, DJ. Kotecki. Welding metallurgy and weldability of stainless steels. New Jersey: John Wiley; (2005).
Google Scholar