[1]
G. Lundberg, A. Palmgren, Dynamic Capacity of Roller Bearings, Generalstabens litografiska anstalts förlag, Sweden, (1947).
Google Scholar
[2]
W.E. Littmann, R.L. Widner, Propagation of Contact Fatigue from Surface and Subsurface Origins, J. Basic Eng, Vol. 88 (3), pp.624-635, (1966).
DOI: 10.1115/1.3645922
Google Scholar
[3]
A. Pandkar, N. Arakere, G. Subhash, Ratcheting-based microstructure-sensitive modeling of the cyclic hardening response of case-hardened bearing steels to rolling contact fatigue, Int. J. Fatigue, 73, pp.119-131, (2015).
DOI: 10.1016/j.ijfatigue.2014.12.002
Google Scholar
[4]
A. Pandkar, N. Arakere, G. Subhash, Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue Int. J. Fatigue, 63, pp.191-202, (2014).
DOI: 10.1016/j.ijfatigue.2014.01.029
Google Scholar
[5]
H. Singh, R. V. Pulikollu, W. Hawkins and G. Smith, Investigation of Microstructural Alterations in Low- and High- Speed Intermediate-Stage Wind Turbine Gearbox Bearings,, Tribo. Lett. Vol. 65, 81, (2017).
DOI: 10.1007/s11249-017-0861-5
Google Scholar
[6]
S. Hazeyama, J. Rozwadowska, E. C. Santos, T. Honda and K Kida, Relationship between subsurface stress and crack initiation from inclusion under single-ball rolling contact fatigue,, Mechanics and Materials, Vol. 152-154, pp.1233-1238, (2012).
DOI: 10.4028/www.scientific.net/amm.307.342
Google Scholar
[7]
J. Rozwadowska, K. Kida, E. C. Santos, T. Honda, H. Koike and K. Kanemasu, Investigation of Crack Initiation and Propagation during Rolling Contact Fatigue of SUJ2 Steel Bearings Using a Newly Developed One-Point Testing Machine, Advanced Materials Research, Vols. 418-420, pp.1613-1617, (2011).
DOI: 10.4028/www.scientific.net/amr.418-420.1613
Google Scholar
[8]
ISO 643, Steels - Micrographic determination of the apparent grain size, (2003).
Google Scholar
[9]
ISO 2639, Steels - Determination and verification of the depth of carburized and hardened cases, (2002).
Google Scholar