Effect of Hot Extrusion on the Flow Behaviour of a Nickel-Based P/M Superalloy

Article Preview

Abstract:

This research investigated the effect of hot extrusion on the flow behaviour of nickel-based superalloy FGH4096 by hot compression experiments in the temperature range from 1020 to 1110 °C and strain rates ranging from 0.1 to 0.001 s-1. The influence of the hot extrusion on the initial microstructures, work hardening rate, strain rate sensitivity, and activation energy of deformation were discussed. The results show that the extruded microstructure is constituted by the fine dynamic recrystallisation of grains. The true strain-true stress curves show that the as-HIPed and as-HEXed FGH4096 superalloy present double flow stress peaks and discontinuous flow softening. The as-HEXed FGH4096 is easily dynamically softened at high temperatures and high strain rates compared with as-HIPed microstructures. As for the work hardening rate, the as-HEXed FGH4096 exhibits higher θ values than that of as-HIPed. It is beneficial to the homogenous deformation and grain refinement during subsequent turbine disk forging. Comparing to as-HIPed FGH4096, the highest strain rate sensitivity value of as-HEXed is 0.306 at 1110 °C. The isothermal superplastic forging of a P/M turbine disk may be carried out at this temperature. The deformation activation energy value of the as-HIPed FGH4096 is lower which means that dislocation sliding and climbing can be easily initiated in the as-HIPed alloy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 298)

Pages:

43-51

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Reed, The Superalloys Fundamentals and Applications, England: Cambridge University Press, (2006).

Google Scholar

[2] T.S. Chester, S.S. Norman, C.H. William, Superalloys II, NewYork: John Wiley & Sons Press, (1987).

Google Scholar

[3] J.C. Borofka, J.K. Tien, R.D. Kissinger, Powder metallurgy and oxide dispersion processing of superalloys, in: J.K. Tien, T. Caulfield (Eds.), Superalloys, Supercomposites and Superceramics, San Diego: Academic Press, 1989, pp.237-284.

DOI: 10.1016/b978-0-12-690845-9.50014-2

Google Scholar

[4] B.L. Ferguson, Aerospace applications, in ASM Handbook Volume 7: Powder Metallurgy, 6th Edn, Materials Park, OH: ASM International, 1997, pp.646-656.

Google Scholar

[5] Y. Ning, Z. Yao, M.W. Fu, Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism, Materials Science and Engineering A. 528(2011) 8065-8070.

DOI: 10.1016/j.msea.2011.07.053

Google Scholar

[6] Y. Ning, M.W. Fu, W. Yao, Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application, Materials Science and Engineering A. 539(2015) 101-106.

DOI: 10.1016/j.msea.2012.01.065

Google Scholar

[7] M.J. Zhang, F.G. Li, Z. Yuan, Effect of heat treatment on the micro-indentation behavior of powder metallurgy nickel based superalloy FGH96, Materials and Design. 49(2013) 705-715.

DOI: 10.1016/j.matdes.2013.02.024

Google Scholar

[8] B. Fang, Z. Ji, M. Liu, Study on constitutive relationships and processing maps for FGH96 alloy during two-pass hot deformation, Materials Science and Engineering A. 590(2014) 255-261.

DOI: 10.1016/j.msea.2013.10.034

Google Scholar

[9] Y. Liu, Z. Yao, Y. Ning, Y. Nan, Effect of deformation temperature and strain rate on dynamic recrystallized grain size of a powder metallurgical nickel-based superalloy, Journal of Alloys and Compounds. 691(2017) 554-563.

DOI: 10.1016/j.jallcom.2016.08.216

Google Scholar

[10] L. Zhang, H. Liu, X. He, Q.X. Rafi-ud-din, M. Qin, Z. Li, G. Zhang, Thermal evolution behavior of carbides and γ' precipitates in FGH96 superalloy powder, Mater Charact. 67(2012) 52-64.

DOI: 10.1016/j.matchar.2012.02.014

Google Scholar

[11] Q. Bai, J. Lin, G. Tian, J. Zou, T.A. Dean, Review and analysis of powder prior boundary (ppb) formation in powder metallurgy processes for nickel-based super alloys, J Powder Metall Min. 127(2015).

DOI: 10.4172/2168-9806.1000127

Google Scholar

[12] Y. Ning, Z. Yao, H. Guo, Investigation on hot deformation behavior of P/M Ni-base superalloy FGH96 by using processing maps, Materials Science and Engineering A.  527(2010) 6794-6799.

DOI: 10.1016/j.msea.2010.07.040

Google Scholar

[13] Y. Ning, Z. Yao, H. Li, High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy, Materials Science and Engineering A. 527(2010) 961-966.

DOI: 10.1016/j.msea.2009.09.011

Google Scholar

[14] S. Wang, S. Fang, Z. Shi, Direct powder forging of PM nickel-based superalloy: densification and recrystallisation, Int J Adv Manuf Technol. 88(2017) 2661-2670.

DOI: 10.1007/s00170-016-8966-9

Google Scholar

[15] J.T. Liu, G.Q. Liu, B.F. Hu. Hot deformation behavior of FGH96 superalloys, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 13(2006) 319-323.

DOI: 10.1016/s1005-8850(06)60066-2

Google Scholar

[16] W. Xu, L. Zhang, S. Gu. Hot compressive deformation behavior and microstructure evolution of HIPed FGH96 superalloy, Trans. Nonferrous Met. Soc. China. 22(2012) 66-71.

DOI: 10.1016/s1003-6326(11)61141-2

Google Scholar

[17] M.J. Zhang, F.G. Li, S.Y. Wang, Effect of powder preparation technology on the hot deformation behavior of HIPed P/M nickel-base superalloy FGH96, Materials Science and Engineering A. 528(2011) 4030-4039.

DOI: 10.1016/j.msea.2011.01.118

Google Scholar

[18] G. He, F. Liu, J. Si, C. Yang, L. Jiang, Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps, Materials and Design. 87(2015) 256-265.

DOI: 10.1016/j.matdes.2015.08.035

Google Scholar

[19] C. Liu, F. Liu, L. Huang, Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy, Trans. Nonferrous Met. Soc. China. 24(2014) 2544-2553.

DOI: 10.1016/s1003-6326(14)63381-1

Google Scholar

[20] W. Guo, J. Wu, F. Zhang, Microstructure, properties and heat treatment process of powder metallurgy Superalloy FGH95, Journal of Iron and Steel Research, International. 13(2006) 65-68.

DOI: 10.1016/s1006-706x(06)60097-6

Google Scholar

[21] T. Sakai, J.J. Jonas, Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metallurgica. 32(1984)189-209.

DOI: 10.1016/0001-6160(84)90049-x

Google Scholar

[22] H.J. McQueen, Development of dynamic recrystallization theory, Materials Science and Engineering A. 387-389(2004) 203-208.

DOI: 10.1016/j.msea.2004.01.064

Google Scholar

[23] A.A. Hameda, L. Blaz, Flow softening during hot compression of Cu-3.45 wt.% Ti alloy, Scripta Materialia. 37(1997)1987-1993.

DOI: 10.1016/s1359-6462(97)00391-6

Google Scholar

[24] J.Y. Si, P.B. Han, X. Chang, Flow behavior of Ti-46.2Al-2.5V-1.0Cr-0.3Ni alloy in secondary hot deformation, Trans. Nonferrous Met. Soc. China. 16(2006) 2091-2095.

Google Scholar

[25] A. Laasraoui, J.J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates, Metallurgical Transactions A. 22A(1991) 1545-1557.

DOI: 10.1007/bf02667368

Google Scholar

[26] K. Karhausen, R. Kopper, Model for integrated process and microstructure simulation in hot forming, Steel Reasearch. 63(1992) 247-256.

DOI: 10.1002/srin.199200509

Google Scholar

[27] C. Bruni, A. Forcellese, F. Gabrielli, Hot workability and models for flow stress of NIMONIC 115 Ni-base superalloy, Journal of Materials Processing Technology. 125(2002) 242-247.

DOI: 10.1016/s0924-0136(02)00302-3

Google Scholar

[28] Y.H. Liu, F.G. Li, H.B. Yu, Deformation behavior of hot isostatic pressing FGH96 Superalloy, Transactions of Tianjin University. 12(2006)281-285.

Google Scholar

[29] R.P. Zhang, F.G. Li, X.N. Wang, Determining Processing Maps of FGH96 Superalloy, Journal of Northwestern Polytechnical University. 25(2007) 652-656.

Google Scholar