Corrosion Resistance of Zn-Al-Mg Alloys with Hypoeutectic Microstructure

Article Preview

Abstract:

Zn-Al-Mg alloys with hypoeutectic microstructure were melted through a high frequency induction furnace. The content of aluminum and magnesium in the alloys were between 1% to 2%. Scanning electron microscopy (SEM) was utilized to analyze microstructure and phase, respectively. Effect of alloying element contents on corrosion resistance was studied. Results show that the Zn-Al-Mg alloys are almost covered by primarily solidified Zn rich block phase and fine lamellar binary and ternary eutectic microstructure exist between the Zn rich phase. The corrosion resistance was characterized through electrochemical test which indicates that increasing Al and Mg content in the Zn-Al-Mg alloys decline corrosion current density. For alloys with 1% Al, more magnesium means lower corrosion potential. For alloys with 2% Al, however, more magnesium suggests higher corrosion potential. In Nyquist curves of electrochemical impedance spectroscopy (EIS) test, Warburg impedance portion could be found for all alloys. With increasing alloying elements content in the Zn-Al-Mg alloys, charge transfer resistance in higher frequency remarkably increase, which implies higher corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 298)

Pages:

52-58

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Elvins, J.A. Spittle, J.H. Sullivan, The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanised steel, Corros. Sci. 50(2008) 1650-1658.

DOI: 10.1016/j.corsci.2008.02.005

Google Scholar

[2] L. Suarez, F. Leysen, C. Masquelier C, D. Warichet, Y. Houbaert, Effects of Mg additions on surface morphology and corrosion resistance of hot-dipped Zn coatings, Defect and Diffusion Forum, 273-276(2008) 300-305.

DOI: 10.4028/www.scientific.net/ddf.273-276.300

Google Scholar

[3] J. Tanaka, K. Ono, S. Hayashi, K. Ohsasa, T. Narita, Effect of Mg and Si on the microstructure and corrosion behavior of Zn-Al hot dip coatings on low carbon steel., ISIJ Int. 42(2002) 80-85.

DOI: 10.2355/isijinternational.42.80

Google Scholar

[4] Y. Morimoto, M. Kurosaki, K. Honda, The Corrosion resistance of Zn-11% Al-3% Mg-0.2% Si hot-dip galvanized steel sheet, Tetsu-to-Hagane. 89(2003) 161-165.

DOI: 10.2355/tetsutohagane1955.89.1_161

Google Scholar

[5] Y. Morimoto, K. Honda, K. Nishimura, S. Tanaka, A. Takahashi, H. Shindo, M. Kurosaki, Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet SUPER DYMA, , Nippon Steel Tech. Rep. 87(2003) 22-24.

DOI: 10.2355/tetsutohagane1955.89.1_161

Google Scholar

[6] H.F. Zhong, Q.F. Zhang, R. Liu, D.M. Cheng, W.L. Wei, Progress of research and development for hot-dip Zn-Al-Mg serial galvanizing strip, Res. Iron Steel. 40(2012) 58-62.

Google Scholar

[7] F. Li, J.S. Lv, H.G. Yang, F. Zhou, Research on ZnAlMg coated steel sheet, Steel Rolling, 30(2013) 45-51.

Google Scholar

[8] Y.X. Xie, X.Y. Jin, L. Wang, Development and application of hot-dip galvanized zinc-aluminum-magnesium coating, J. Iron Steel Res. 29(2017) 167-174.

Google Scholar

[9] G.R. Jiang, G.H. Liu, Microstructure and corrosion resistance of solidified Zn-Al-Mg alloys , J. J. Chin. Soc. Corros. Prot. 38(2018) 191-195.

Google Scholar

[10] R.N. Ma, Y.Z. Fan, A. Du, P.P. Zhang, Effect of cooling rate on morphology and corrosion resistance of Zn-Al-Mg alloy, Trans. Mater. Heat Treat. 36(2015) 49-55.

Google Scholar

[11] T. Prosek, A. Nazarov, F. Goodwin, J. Serak, D. Thierry, Improving corrosion stability of Zn, Al, Mg by alloying for protection of car bodies, Surf. Coat. Technol. 306(2016) 439-447.

DOI: 10.1016/j.surfcoat.2016.03.062

Google Scholar

[12] T. Prosek, J. Hagström, P. Dan, N. Fuertes, F. Linderg, O. Chocholaty, C. Taxen, J. Serak, D. Thierry, Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability, Corros. Sci. 110(2016) 71-81.

DOI: 10.1016/j.corsci.2016.04.022

Google Scholar

[13] R. Krie, A. Vimalanandan, M. Rohwerder, Corrosion of Zinc and Zn-Mg alloys with varying microstructures and magnesium content, J. Electrochem. Soc. 161(2014) C156-C161.

DOI: 10.1149/2.103403jes

Google Scholar

[14] C. Yao, S.L. Tay, T. Zhu, H. Shang, W. Gao, Effects of Mg content on microstructure and electrochemical properties of Zn–Al–Mg alloys, J. Alloy. Compd. 645(2015) 131-136.

DOI: 10.1016/j.jallcom.2015.05.010

Google Scholar

[15] H. Liang, S.L. Chen, Y.A. Chang, A thermodynamic description of the Al-Mg-Zn system, Metall. Mater. Trans. A. 28(1997) 1725-1734.

DOI: 10.1007/s11661-997-0104-8

Google Scholar

[16] M. Stern, Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves, J. Electrochemical Soc. 104(1957) 56-63.

DOI: 10.1149/1.2428473

Google Scholar

[17] F. Mansfeld, Fundamental aspects of the polarization resistance technique—the early days, J. Solid State Electrochemistry. 13(2009) 515-520.

DOI: 10.1007/s10008-008-0652-x

Google Scholar

[18] A.J. Ihde, Faraday's electrochemical laws and the determination of equivalent weights, J. Chem. Educ. 31(1954) 226-232.

Google Scholar

[19] F. Li, J.S. Lv, H.G. Yang, Y.L. Kang, The corrosion behavior for Zn-Al-Mg coating in NaCl system, China Surf. Eng. 24(2011) 25-29.

Google Scholar