Development of the Snoek Anelastic Relaxation Correlated with Oxygen in β-Ti Alloys

Article Preview

Abstract:

The β-Ti alloys exhibit excellent shape memory effect and superelastic properties. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The anelastic relaxation in β-Ti alloys is discussed in this paper. β-Ti alloys possesses bcc (body center body) structure. The oxygen (O) atoms in in the alloys is difficult to be removed. The O atoms located at the octahedral sites in the alloys will produce relaxation under cycle stress. In addition, the interaction between the interstitial atoms and substitute atoms, e.g., Nb-O,Ti-O can also produce relaxation. Therefore, the observed relaxational internal friction peak during the measuring of internal friction is widened. The widened multiple relaxation peak can be revolved into Debye,s elemental peaks in Ti-based alloys. The relaxation peak is associated with oxygen movements in lattices under the application of cycle stress and the interactions of oxygen-substitute atoms in metastable β phase (βM) phase for the water-cooled specimens and in the stable β (βS) phase for the as-sintered specimens. The damping peak height is not only associated with the interstitial oxygen, but also the stability and number of βM in the alloys.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 298)

Pages:

59-63

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Inamura, Y. Yamamoto, H. Hosoda, H. Y. Kim, S. Miyazaki, Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy, Acta Mater., 58 (2010) 2535-2544.

DOI: 10.1016/j.actamat.2009.12.040

Google Scholar

[2] Y. Al-Zain, H. Y. Kim, T. Koyano, H. Hosoda,S. Miyazaki, Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys, Acta Mater., 59 (2011) 1464-1473.

DOI: 10.1016/j.actamat.2010.11.008

Google Scholar

[3] Z.C. Zhou, J. Du , Y. K. Zhang, Y. S. Gu, Y. J. Yan and H. Yang, Influence of phase constitutions on compressive properties of as sintered and as quenched alloys, International Heat Treatment and Surface Engineering, 8(2014)144-148.

DOI: 10.1179/1749514814z.000000000115

Google Scholar

[4] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. Eng. A, 243 (1998) 244-249.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[5] D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Theory-guided bottom-up design of β- titanium alloys as biomaterials based on first principles calculations: theory and experiments, Acta Mater., 55 (2007) 4475-4487.

DOI: 10.1016/j.actamat.2007.04.024

Google Scholar

[6] A. S. Nowick, B. S. Berry, Anelastic relaxation in crystalline solids, ( Now York and London: Academic Press),(1972).

Google Scholar

[7] O. Florêncio, W. J. Botta F, C. R. Grandini, H. Tejima, J. A. R. Jordão, Anelastic behavior in Nb-Ti alloys containing interstitial elements, J. Alloys Comp., 211-212(1994) 37-40.

DOI: 10.1016/0925-8388(94)90442-1

Google Scholar

[8] L. H. Almeida, C. R. Grandini, R. Caram, Anelastic spectroscopy in Ti alloy used as biomaterial, Mater. Sci. Eng. A, 521-522( 2009) 59-62.

DOI: 10.1016/j.msea.2008.09.123

Google Scholar

[9] M. Weller, G. Y. Li,J. X. Zhang, T. S. Kê, Accurate determination of activation enthalpies associated with the stress-induced migration of oxygen or nitrogen in tantalum and niobium, Acta Metall., 29(1981)1047-1054.

DOI: 10.1016/0001-6160(81)90056-0

Google Scholar

[10] J. L. Murray, Phase Diagram of Binary Titanium Alloys, Materials Park (Ohio: American Society for Metals)1987 p.188.

Google Scholar

[11] J. R. S. Martins JR, R. O. Araujo, R. A. Nogueira, C. R. Grandini, Internal friction and microstructure of Ti and Ti-Mo alloys containing oxygen, Arch. Metall. Mater., 61 (2016 )25-30.

DOI: 10.1515/amm-2016-0011

Google Scholar

[12] J. L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica, 8(1941)711-733.

DOI: 10.1016/s0031-8914(41)90517-7

Google Scholar

[13] J. E. Doherty, D. F. Gibbons, Internal friction studies in some Titanium and Zirconium based alloys, Acta Metall., 19(1971) 275-282.

DOI: 10.1016/0001-6160(71)90093-9

Google Scholar

[14] T. C. Niemeyer, J. M. A. Gimenez, L. H. Almeida, C. R. Grandini, O. Florêncio, Activation energy measurement of oxygen ordering in Nb-Ti alloy by anelastic relaxation, Materials Research, 15(2002) 143-147.

DOI: 10.1590/s1516-14392002000200010

Google Scholar

[15] F. X. Yin, S. Satoshi, D. H. Ping and K. Nagai, Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution, Adv. Mater., 18(2006) 1541-1544.

DOI: 10.1002/adma.200600128

Google Scholar

[16] P. P. Tung and A. W. Sommer, A study of dislocation-hydrogen interaction in α-Titanium via internal friction measurements, Acta Metall., 22 (1974) 191-200.

DOI: 10.1016/0001-6160(74)90010-8

Google Scholar

[17] F. X. Yin, L. M. Yu, D. H. Ping, S. Iwasaki, Snoek relaxation in bcc Metals and high damping β-Ti alloys, Mater. Sci. Forum, 614 (2009) 175-180.

DOI: 10.4028/www.scientific.net/msf.614.175

Google Scholar

[18] M. S. Ahmad, Z. C. Szkopiak, Snoek relaxation peaks in solid solutions of niobium, J. Phys. Chem. Solids, 31(1970)1799-1804.

DOI: 10.1016/0022-3697(70)90170-8

Google Scholar

[19] M. Weller, G. Hanceczok, J. Diehl, Internal-friction studies on oxygen-oxygen interaction in niobium: 1. Experimental results and application of previous interpretations,Phys. Stat. Sol. B,172(1992)145-159.

DOI: 10.1002/pssb.2221720115

Google Scholar

[20] R. Cantelli,The roots and the future of mechancial spectroscopy,Mater. Sci. Eng. A, 442(2006) 5-20.

Google Scholar

[21] M.Weller, The Snoek relaxation in bcc metals-from steel wire to meteorites, Mater. Sci. Eng. A, 442(2006) 21-30.

DOI: 10.1016/j.msea.2006.02.232

Google Scholar

[22] C. R.Grandini , O. Florêncio, W. J. B. Filho, Diffusion of interstitial solutes in Nb-46(wt.%)Ti alloys measured by meachanical spectroscopy,Defect Diffus. Forum, 326-328(2012) 708-712.

DOI: 10.4028/www.scientific.net/ddf.326-328.708

Google Scholar

[23] Z. C. Zhang, Y. K. Zhang, J. Du, Y. J. Yan, S. Y. Gu, Snoek-type anelastic relaxation in a water-quenched Ti-Nb alloy,Applied Mechanics Materials, 487(2014),3-6.

DOI: 10.4028/www.scientific.net/amm.487.3

Google Scholar

[24] H. Lu, C. X. Li, F. X. Yin, Q. F. Fang,O.Umezawa, Effects of alloying elements on the Snoek-type relaxation in Ti-Nb-X-O alloys (X=Al, Sn, Cr, and Mn),Mater. Sci. Eng. A 541(2012) 28-32.

DOI: 10.1016/j.msea.2012.01.113

Google Scholar

[25] H. Lu,C. X. Li, F. X. Yin, Q. F. Fang,O.Umezawa, Effects of alloying elements on the oxygen Snoek-type relaxation in Ti-Nb alloys, Solid State Phenom., 184(2012) 75-78.

DOI: 10.4028/www.scientific.net/ssp.184.75

Google Scholar

[26] I. S. Golovin and S. B. Golovina, Effect of alloying α-Fe with Aluminum, Silicon,Cobalt,and Germanium on the Snoek relaxation parameters,Physics of Metals and Metallography,102 (2006) 593-603.

DOI: 10.1134/s0031918x06120064

Google Scholar

[27] Z.C. Zhou, J. Du, X. B. Zhu, Y. J. Yan, X. F. Wang, Snoek-type anelastic relaxation in sintered β-tpye Ti-Nb alloys (in Chinese), submitted to Acta physica sinica.

Google Scholar